Lecture 26 - Programming with OpenCL

ECE 459: Programming for Performance

Jon Eyolfson

University of Waterloo

March 14, 2012

Simple Example Another Example

Introduction

Today, we'll see how to program with OpenCL
= We're using OpenCL 1.1
= There is a lot of initialization and querying

= When you compile your program, make sure to include the
-10penCL flag

You can find the official documentation here:
http://www.khronos.org/opencl/
More specifically:

http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/

Let's just dive into an example

Lecture 26 - Programming with OpenCL University of Waterloo

http://www.khronos.org/opencl/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/

Simple Example Another Example

Reminder

All of the data is in an NDRange

= The range can be divided into Work-Groups (software)
= The work-groups run on wavefronts/warps (hardware)
= Each wavefront/warp executes Work-ltems

All branches in a wavefront/warp should execute the same path

If an iteration of a loop takes t if one work-item executes 100
iterations, the total time to complete the wavefront/warp is 100t

Lecture 26 - Programming with OpenCL University of Waterloo

Simple Example Another Example

Simple Example (1)

#include <CL/cl.h>
#include <stdio.h>

#define NWITEMS 512

// A simple memset kernel
const char *source =

" __kernel void memset(__global uint xdst) \n"
n \nll
" dst[get_global_id (0)] = get_global_id (0); \n"
II} \nll;

int main(int argc, char %% argv)

// 1. Get a platform.
cl_platform_id platform;
clGetPlatformIDs (1, &platform , NULL);

Lecture 26 - Programming with OpenCL University of Waterloo

Simple Example Another Example

Explanation (1)

= Include the OpenCL header

= Request a platform (also known as hosts)

= A platform contains compute devices
= May be GPU or CPU devices, etc.

Lecture 26 - Programming with OpenCL University of Waterloo

Simple Example Another Example

Simple Example (2)

// 2. Find a gpu device.
cl_device_id device;
clGetDevicelDs(platform , CL_DEVICE_TYPE_GPU,

1,
&device ,
NULL);
// 3. Create a context and command queue on that device.
cl_context context = clCreateContext (NULL,
1,
&device ,
NULL, NULL, NULL);
cl_command_queue queue = clCreateCommandQueue(context ,
device ,
0, NULL);

Lecture 26 - Programming with OpenCL University of Waterloo

Simple Example Another Example

Explanation (2)

= We look for our GPU device that we wish to use

= We request a OpenCL context (which reprsents all of
OpenCL's state)

= Create a command-queue, we get OpenCL to do work by
telling it to run a kernel in the queue

Lecture 26 - Programming with OpenCL University of Waterloo

Simple Example Another Example

Simple Example (3)

// 4. Perform runtime source compilation, and obtain

// kernel entry point.

cl_program program = clCreateProgramWithSource(context ,
1,
&source ,
NULL,
NULL);

clBuildProgram (program, 1, &device, NULL, NULL, NULL);

cl_kernel kernel = clCreateKernel(program, "memset",

NULL);

// 5. Create a data buffer.

cl_mem buffer = clCreateBuffer(context,
CL_MEM_WRITE_ONLY,
NWITEMS % sizeof(cl_uint),
NULL, NULL);

Lecture 26 - Programming with OpenCL University of Waterloo

Simple Example Another Example

Explanation (3)

= We create an OpenCL program (what runs on the compute
unit)
= kernels
= functions
= declarations

= |n this case, we create a kernel called memset from source

= OpenCL may also create programs from binaries
(may be intermediate representation)

= Next, we need a data buffer (enables comunication between
devices)

= This program does not have any input, so we don't put
anything into the buffer, just declare its size

Lecture 26 - Programming with OpenCL University of Waterloo

Simple Example Another Example

Simple Example (4)

// 6. Launch the kernel. Let OpenCL pick the local work
// size .
size_t global_work_size = NWITEMS;
clSetKernelArg(kernel ,0, sizeof(buffer), (void*)&buffer);
clEnqueueNDRangeKernel (queue,
kernel ,
1, // dimensions
NULL, // initial offsets
&global_work_size, // number of
// work—items
NULL, // work—items per work—group
0, NULL, NULL); // events
clFinish (queue);

// 7. Look at the results via synchronous buffer map.
cl_uint %xptr;
ptr = (cl_uint *)clEnqueueMapBuffer(queue, buffer,
CL_TRUE, CL_MAP_READ,
0, NWITEMS x
sizeof (cl_uint),
0, NULL, NULL, NULL);

Lecture 26 - Programming with OpenCL University of Waterloo

Simple Example Another Example

Explanation (4)

= Set the kernel arguments to buffer

= We launch the kernel, enqueue the 1-dimensional index space
starting at 0

= We specify the index space has NWITEMS elements and not to
subdivide the program into work-groups

= There is an event interface, which will do not use
= We copy the results back, the call is blocking CL_TRUE

= This means we don't need an explicit c1Finish() call

= We specify we went to read the results back into our buffer

Lecture 26 - Programming with OpenCL University of Waterloo

Simple Example Another Example

Simple Example (5)

int i;

for(i=0; i < NWITEMS; i++)
printf("%d %d\n", i, ptr[i]);

return O;

= The program simply prints 0 0, 1 1, ..., 511 511

= Note, there is no clean up, or any error handling for any of the
OpenCL functions

Lecture 26 - Programming with OpenCL University of Waterloo

Simple Example Another Example

C++ Bindings

= |f we use the C4++ bindings, we'll get automatic resource

release and exceptions
= C++ likes to use the RAII style
(resource allocation is initialization)

= Change the header to CL/cl.hpp and define
__CL_ENABLE_EXCEPTIONS

= We would also like to store our kernel in a file instead of a
string

= The C API is not so nice to work with

Lecture 26 - Programming with OpenCL University of Waterloo

Simple Example Another Example

Vector Addition Kernel

= Let's write a kernel that adds two vectors and stores the result

= This kernel will go in the file vector_add_kernel.cl

__kernel void vector_add(__global const int #A,
__global const int B,
__global int %xC) {

// Get the index of the current element to be processed
int i = get_global_id(0);

// Do the operation
Cli] = A[i] + B[i];

= Other qualifiers: 1ocal, constant and private

Lecture 26 - Programming with OpenCL University of Waterloo

Simple Example Another Example

Vector Addition (1)

#define _ CL_ENABLE_EXCEPTIONS
#include <CL/cl.hpp>

#include <iostream>
#include <fstream>
#include <string>
#include <utility >
#include <vector>

int main() {

// Create the two input vectors

const int LIST_SIZE = 1000;

int *A = new int[LIST_SIZE];

int *B = new int[LIST_SIZE];

for(int i = 0; i < LIST_SIZE; i++) {
Ali] = i;
B[i] = LIST_SIZE — i;

Lecture 26 - Programming with OpenCL University of Waterloo

Simple Example Another Example

Vector Addition (2)

try {
// Get available platforms
std :: vector<cl :: Platform> platforms;

cl::Platform :: get(&platforms);

// Select the default platform and create a context
// using this platform and the GPU
cl_context_properties cps[3] = {
CL_CONTEXT_PLATFORM,
(cl_context_properties)(platforms[0])(),
0
}i
cl:: Context context(CL_DEVICE_TYPE_GPU, cps);

// Get a list of devices on this platform
std :: vector<cl :: Device> devices =
context.getlnfo<CL_CONTEXT_DEVICES>();

// Create a command queue and use the first device
cl :: CommandQueue queue = cl:: CommandQueue(context ,
devices [0]);

Lecture 26 - Programming with OpenCL University of Waterloo

Simple Example Another Example

Explanation (2)

= You can define __NO_STD_VECTOR and use cl::vector
(same with strings)

= You can enable profiling by adding
CL_QUEUE_PROFILING_ENABLE as the third argument to
queue

Lecture 26 - Programming with OpenCL University of Waterloo

Simple Example Another Example

Vector Addition (3)

// Read source file

std ::ifstream sourceFile("vector_add_kernel.cl");
std::string sourceCode(
std ::istreambuf_iterator<char>(sourceFile),

(std::istreambuf_iterator<char >())
)i
cl :: Program:: Sources source (
1,
std :: make_pair(sourceCode.c_str (),
sourceCode. length()+1)

E

// Make program of the source code in the context
cl::Program program = cl::Program(context, source);

// Build program for these specific devices
program. build (devices);

// Make kernel
cl::Kernel kernel(program, "vector_add");

Lecture 26 - Programming with OpenCL University of Waterloo

Simple Example Another Example

Vector Addition (4)

// Create memory buffers
cl::Buffer bufferA = cl:: Buffer(
context ,
CL_MEM_READ_ONLY,
LIST_SIZE % sizeof(int)
)i
cl::Buffer bufferB = cl:: Buffer(
context ,
CL_MEM_READ_ONLY,
LIST_SIZE % sizeof(int)
)i
cl:: Buffer bufferC = cl:: Buffer(
context ,
CL_MEM_WRITE_ONLY,
LIST_SIZE % sizeof(int)
)

Lecture 26 - Programming with OpenCL University of Waterloo

Simple Example Another Example

Vector Addition (5)

// Copy lists A and B to the memory buffers
queue.enqueueWriteBuffer(
bufferA ,
CL_TRUE,
0,
LIST_SIZE % sizeof(int),
A
)i
queue.enqueueWriteBuffer(
bufferB ,
CL_TRUE,
0,
LIST_SIZE % sizeof(int),
B

)

// Set arguments to kernel
kernel .setArg (0, bufferA);
kernel .setArg (1, bufferB);
kernel .setArg (2, bufferC);

Lecture 26 - Programming with OpenCL University of Waterloo

Simple Example Another Example

Explanation (5)

enqueuexBuffer arguments:

= buffer
cl_ bool blocking_write

= ::size_t offset
= ::size_t size

= const void * ptr

Lecture 26 - Programming with OpenCL University of Waterloo

Simple Example Another Example

Vector Addition (6)

// Run the kernel on specific ND range
cl::NDRange global (LIST_SIZE);
cl::NDRange local (1);
queue.enqueueNDRangeKernel (

kernel ,

cl::NullRange,

global ,

local

)i

// Read buffer C into a local list
int¥ C = new int[LIST_SIZE];
queue.enqueueReadBuffer(

bufferC ,

CL_TRUE,

0,

LIST_SIZE x sizeof(int),

C

Lecture 26 - Programming with OpenCL University of Waterloo

Another Example

Vector Addition (7)

for(int i = 0; i < LIST_SIZE; i ++) {
std ::cout << A[i] << " + " << B[i] << " ="
<< C[i] << std::endl;

} catch(cl::Error error) {
std :: cout << error.what() << "(" << error.err()
<< ")" << std::endl;

}

return O;

= This program just prints all the additions (equaling 1000)

Lecture 26 - Programming with OpenCL University of Waterloo

Another Example

Other Improvements

= The host memory is still unreleased

= In the same number of lines, we could use the C++11
unique_ptr, which would free the memory for us

= You can use a vector instead of an array, and use &v [0]
instead of <type>x*

= Valid as long as the vector is not resized

Lecture 26 - Programming with OpenCL University of Waterloo

Simple Example Another Example

Summary

= Went through real OpenCL examples

= Have the reference card for the AP

= C++ template for setting up OpenCL

= Aside: if you're serious about programming in C4++, check
out Effective C++ by Scott Meyers (slightly dated with
C++11, but it still has some good stuff)

Lecture 26 - Programming with OpenCL University of Waterloo

Simple Example Another Example

Other Notes

= Assignment 2 grading is delayed again

= Assignment 4 will be posted on the 21st and due on the 28th
(will be similar to last years, but shorter)

Lecture 26 - Programming with OpenCL University of Waterloo

	Simple Example
	Another Example

