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Introduction

• Framework introduced by Google for large problems
• Consists of two functional operations: map and reduce

>>> map( lambda x : x∗x , [ 1 , 2 , 3 , 4 , 5 ] )
[ 1 , 4 , 9 , 16 , 25 ]

• map applies a function to an iterable data-set

>>> reduce ( lambda x , y : x+y , [ 1 , 2 , 3 , 4 , 5 ] )
15

• reduce applies a function to an iterable data-set cumulatively
• ((((1+2)+3)+4)+5) in this example
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Intuition

• In functional languages, the functions are “pure”
(no side-effects)

• Since they are pure, and therefore independent, it’s safe to
parallelize them

• Note: funtional languages, like Haskell, have their own
parallel frameworks, which allows easy parallelization

• Many problems can be represented as a map operation
followed by reduce (for example, Assignment 1)
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Hadoop

• Apache Hadoop is a framework which implements MapReduce

• The most widely used open source one, used by Amazon’s
EC2 (elastic compute cloud)

• Allows work to be distrubed across many different nodes (or
re-tried if a node goes down)

• Includes HDFS (Hadoop distributed file system), which
distrributes the data across nodes and provides failure
handling (you can also use Amazon’s S3 storage service)
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Map

• Input file is split up into multiple pieces

• The pieces are then processed as (key, value) pairs

• The Mapper function uses these (key, value) pairs and
outputs another set of (key, value) pairs
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Reduce

• Collects the input files from the previous map
(which may be on different nodes, needing copying)

• The files are then merge sorted (so that the key-value pairs for
a given key are contiguous)

• The file is read sequentially and the values split up into lists
for the same key

• This data consisting of keys and lists of values are passed to
the reduce method (done in parallel as well) then
concatenated
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Combine

• This step can be run right after the map, and before reduce

• It takes advantage of the fact that elements produced by the
map operation are still available in memory

• Every so many elements, you can use your combine operation
to take (key, value) outputs of the map and create new (key,
value) inputs of the same types
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WordCount Example

• Consider we just want to count the number of occurrences of
words in some files

• Take for example the following files:

H e l l o World Bye World

H e l l o Hadoop Goodbye Hadoop

We want the following output:
( Bye , 1)
( Goodbye , 1)
( Hadoop , 2)
( He l l o , 2)
( World , 2)

Lecture 27 - MapReduce University of Waterloo



WordCount Example Operations

Mapper

• Split the input file into strings, representing words
• For each word, output the following (key, value) pair:

(word, 1)

Reduce

• Sum all of the values of the word (key) and output:
(word, sum)

Combine

• We could do the reduce step for the in-memory values while
doing the map operation

Note: here, the output of the map and input/output of the reduce
are the same, but they don’t have to be
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WordCount Example Operation (1)

H e l l o World Bye World

After map:
( He l l o , 1)
( World , 1)
( Bye , 1)
( World , 1)

After combine:
( He l l o , 1)
( Bye , 1)
( World , 2)
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WordCount Example Operation (2)

H e l l o Hadoop Goodbye Hadoop

After map:
( He l l o , 1)
( Hadoop , 1)
( Goodbye , 1)
( Hadoop , 1)

After combine:
( He l l o , 1)
( Goodbye , 1)
( Hadoop , 2)
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WordCount Example Operation (3)

After concatenation, sorting and creating lists of values
( Bye , [ 1 ] )
( Goodbye , [ 1 ] )
( Hadoop , [ 2 ] )
( He l l o , [ 1 , 1 ] )
( World , [ 2 ] )

After the reduce, which is what we want:
( Bye , 1)
( Goodbye , 1)
( Hadoop , 2)
( He l l o , 2)
( World , 2)
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WordCount Example C++ Code (1)

• There’s also APIs for Java/Python, etc.

#i n c l u d e " hadoop/ P ipe s . hh "
#i n c l u d e " hadoop/ TemplateFactory . hh "
#i n c l u d e " hadoop/ S t r i n g U t i l s . hh "

c l a s s WordCountMap : p u b l i c HadoopPipes : : Mapper {
p u b l i c :

WordCountMap ( HadoopPipes : : TaskContext& c o n t e x t ){}
v o i d map( HadoopPipes : : MapContext& c o n t e x t ) {

s t d : : v e c to r <s t d : : s t r i n g > words =
HadoopUt i l s : : s p l i t S t r i n g ( c o n t e x t . g e t I n p u t V a l u e ( ) , " " ) ;

f o r ( uns i gned i n t i =0; i < words . s i z e ( ) ; ++i ) {
c o n t e x t . emit ( words [ i ] , " 1 " ) ;

}
}

} ;
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WordCount Example C++ Code (2)

c l a s s WordCountReduce : p u b l i c HadoopPipes : : Reducer {
p u b l i c :

WordCountReduce ( HadoopPipes : : TaskContext& c o n t e x t ){}
v o i d r educe ( HadoopPipes : : ReduceContext& c o n t e x t ) {

i n t sum = 0 ;
w h i l e ( c o n t e x t . nex tVa lue ( ) ) {

sum += HadoopUt i l s : : t o I n t ( c o n t e x t . g e t I n p u t V a l u e ( ) ) ;
}
c o n t e x t . emit ( c o n t e x t . ge t InputKey ( ) ,

HadoopUt i l s : : t o S t r i n g ( sum ) ) ;
}

} ;

i n t main ( i n t argc , cha r ∗ a rgv [ ] ) {
r e t u r n HadoopPipes : : runTask (

HadoopPipes : : TemplateFactory<WordCountMap ,
WordCountReduce >() ) ;

}
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Other Examples

• Distributed Grep
• Count of URL Access Frequency
• Reverse Web-Link Graph
• Term-Vector per Host
• Inverted Index

• Map: parses each document, and emits a sequence of
(word, document ID) pairs

• Reduce: accepts all pairs for a given word, sorts the
corresponding document IDs and emits a
(word, list(document ID)) pair

• Output: all of the output pairs from reducing forms a simple
inverted index
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Other Notes

• Hive builds on top of Hadoop, allowing you to use an
SQL-like language to query outputs on HDFS, or provide
custom mappers/reducers to get more information

• The cloud framework is a great way to start a new project,
since you can add or remove nodes easily as your problem
changes size (Hadoop or MPI are good examples)

References
http://wiki.apache.org/hadoop/
http://code.google.com/edu/parallel/mapreduce-tutorial.html

Lecture 27 - MapReduce University of Waterloo

http://wiki.apache.org/hadoop/
http://code.google.com/edu/parallel/mapreduce-tutorial.html


Summary

• The MapReduce is an excellent framework for dealing with
massive data-sets

• Hadoop is the common implementation you can use
(even use on most cloud computing services)

• You just need 2 functions (optionally 3): mapper, reducer and
combiner

• Just remember the output of the mapper/combiner must be
the input to the reducer
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