
Lecture 28 - Software Transactional Memory
ECE 459: Programming for Performance

Jon Eyolfson

University of Waterloo

March 26, 2012

Introduction

• An old idea, that is seeing some renewed interest

• Instead of programming with locks, we have transactions with
memory

• Analogous to database transactions

• Either a series of memory operations all succeed or fail (and
get rolled back) and are later retried

Lecture 28 - Software Transactional Memory University of Waterloo

Benefit

• Very simple programming model, you don’t have to worry
about lock granularity or deadlocks

• You just group lines of code that should logically be one
operation in an atomic block

• It is then the implementations job to make sure that if the
code operates as if it is an atomic transaction

Lecture 28 - Software Transactional Memory University of Waterloo

Example

t r a n s f e r _ f u n d s (Account ∗ sender , Account ∗ r e c e i v e r ,
doub l e amount) {

atomic {
sender −>funds −= amount ;
r e c e i v e r −>funds += amount ;

}
}

• With locks we have two main options:
• Lock everything to do with modifying accounts (slow, may

forget to use lock)
• Have a lock for every account (deadlocking, may forget to use

lock)
• With STM, we do not have to worry about remembering to

acquire locks or deadlocks

Lecture 28 - Software Transactional Memory University of Waterloo

Drawbacks

• The concept of rollback is key, however some things can not
be rolled back (write to the screen, packet over the network)

• Nested transactions, what if an inner transaction succeeds, yet
the transaction aborts?

• Most implementatoins (especially hardware) have a limited
transaction size

Lecture 28 - Software Transactional Memory University of Waterloo

Basic Implementation (Software)

• In all atomic blocks all reads/writes are recorded to a log

• At the end of the block, the thread verifies that no other
threads have modified any values read

• If the validation is successful, the changes are committed

• Otherwise, the block is aborted and re-executed
Note: there are also hardware implementations as well

Lecture 28 - Software Transactional Memory University of Waterloo

Basic Implementation Issues

• Since you don’t protect against dataraces and just rollback it
is possible for a datarace to trigger a fatal error in your
program

atomic {
x++;
y++;

}

atomic {
i f (x != y)

w h i l e (t r u e) { }
}

• In this silly example, initially x = y and you may think the
code will not go into an infinite loop, but it can

Lecture 28 - Software Transactional Memory University of Waterloo

Implementations

Note: Typically the performance is no worse than twice as slow
over fine-grained locks

• Toward.Boost.STM (C++)

• SXM (Microsoft, C#)

• Built-in to the language (Clojure, Haskell)

• AtomJava (Java)

• Durus (Python)

Lecture 28 - Software Transactional Memory University of Waterloo

Summary

• Software Transactional Memory provides a more natural
approach to parallel progrmaming

• No need to deal with locks and associated problems

• Currently slow, but a lot of research is going into improving
this now

• Operates by either completing an atomic block or retrying (by
rolling back) until it successfully completes

Lecture 28 - Software Transactional Memory University of Waterloo

