
Lecture 03 - Parallel Limitations and Concepts
ECE 459: Programming for Performance

Jon Eyolfson

University of Waterloo

January 9, 2012



Limitations

• Our main focus is parallelization

• Most programs have a sequential part and a parallel part

• Amdahl’s Law answers “what are the limits to parallelization?”

Lecture 03 - Parallel Limitations and Concepts University of Waterloo



Formulation (1)

Let S be the fraction of serial runtime for a serial execution
Let P be the fraction of parallel runtime for a serial execution
Therefore, S + P = 1

If we have 4 processors, what do we want to happen to the
following runtime?

Runtime

S P

Lecture 03 - Parallel Limitations and Concepts University of Waterloo



Formulation (2)

Runtime

S P

We want to split up the parallel part over 4 processors

Runtime

S P

P

P

P

Lecture 03 - Parallel Limitations and Concepts University of Waterloo



Formulation (2)

Let Ts be the time for the program to run in serial
Let N be the number of processors/parallel executions
Let Tp be the time for the program to run in parallel

• Under perfect conditions you will get N speedup for P

Tp = Ts · (S + P
N )

Lecture 03 - Parallel Limitations and Concepts University of Waterloo



Formulation (3)

How much faster can we make the program?

speedup = Ts
Tp

speedup = Ts
TS ·(S+ P

N )

speedup = 1
S+ P

N

We are assuming there is no overhead for parallelizing, or the costs
are near zero

Lecture 03 - Parallel Limitations and Concepts University of Waterloo



Scaling with Fraction of Parallel Code

0 4 8 12 16 20 24 28 32

Number of processors

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32
S

p
e
e
d

u
p

50% Parallel
70% Parallel
90% Parallel
95% Parallel
99% Parallel
100% Parallel

Lecture 03 - Parallel Limitations and Concepts University of Waterloo



Amdahl’s Law

Replace S with (1− P)

speedup = 1
(1−P)+ P

N

maximum speedup = 1
(1−P) , since P

N → 0

As you might imagine, the asymptotes in the previous graph are
bounded by the maximum speedup

Lecture 03 - Parallel Limitations and Concepts University of Waterloo



Amdahl’s Law Generalization

The program may have many parts, each of which we can tune to
a different degree

Let’s generalize Amdahl’s Law

Let f1, f2, . . . , fn be the fraction of time in part n
Let Sf1 , Sfn , . . . , Sfn be the fraction of time in part n

speedup = 1
f1

Sf1
+

f2
Sf2

+...+ fn
Sfn

Lecture 03 - Parallel Limitations and Concepts University of Waterloo



Application (1)

Consider a program with 4 distinct parts in the following scenario:

Speedup
Part Fraction of Runtime Option 1 Option 2
1 0.55 1 2
2 0.25 5 1
3 0.15 3 1
4 0.05 10 1

Which option is better?

Lecture 03 - Parallel Limitations and Concepts University of Waterloo



Application (2)

“Plug and chug” the numbers

Option 1
speedup = 1

0.55+ 0.25
5 + 0.15

3 + 0.05
5

= 1.53

Option 2
speedup = 1

0.55
2 +0.45 = 1.38

Lecture 03 - Parallel Limitations and Concepts University of Waterloo



Esimating P

Useful to know, don’t have to commit to memory

Pesimated =
1

speedup −1
1
N −1

• Quick way to guess the fraction of parallel code
• Use value of P to predict speedup for a different number of

processors

Lecture 03 - Parallel Limitations and Concepts University of Waterloo



Other Examples

We run a program in serial and find it spends 12.5% of it’s
execution on serial code and 87.5% on parallel code. How many
processors do we need in order to get within 10% of the perfect
parallel runtime?

Lecture 03 - Parallel Limitations and Concepts University of Waterloo



Summary

• Important to focus on the part of the program which has the
most impact

• Provides an estimation of perfect performance gains from
parallelization

• Only applies to solving a fixed problem size in the shortest
possible period of time

Lecture 03 - Parallel Limitations and Concepts University of Waterloo



Formulation

Let n be a measure of the problem size
Let S(n) be the fraction of serial runtime for a parallel execution
Let P(n) be the fraction of parallel runtime for a parallel execution

Tp = S(n) + P(n) = 1
Ts = S(n) + N · P(n)

speedup = Ts
Tp

Lecture 03 - Parallel Limitations and Concepts University of Waterloo



Gustafson’s Law

speedup = S(n) + N · P(n)

Assuming the fraction of runtime in serial part decreases as n
increases, the speedup approaches N

• Shows that large problems can be efficiently parallelized

Lecture 03 - Parallel Limitations and Concepts University of Waterloo



Driving Metaphor

Amdahl’s Law
Suppose you’re travelling between 2 cities 90 km apart. If you
travel for an hour at a constant speed less than 90 km/h, your
average will never equal 90 km/h, even if you energize at your
destination.

Gustafson’s Law
Suppose you’ve been travelling at a constant speed less than
90 km/h. Given enough distance, you can bring your average up to
90 km/h.

Lecture 03 - Parallel Limitations and Concepts University of Waterloo



Important Definitions

Parallelism
Two or more tasks running at the same time. Main goal is to run
tasks as fast as possible. Main concern is dependencies.

Concurrency
Two or more tasks are concurrent if the ordering of the two tasks is
not predetermined. Main concern is synchronization.

Lecture 03 - Parallel Limitations and Concepts University of Waterloo



Threads

• Important to understand what they are

• How they are implemented and used

• Ways we can take advantage of them

Lecture 03 - Parallel Limitations and Concepts University of Waterloo



Comparison to Processes

Process
An instance of a computer program that contains program code
and current activity.

• Own address space / virtual memory
• Own stack / registers
• Own resources (file handles, etc.)

Thread
In most cases, a thread is contained within a process.

• Same address space as parent process
• Access to same code and variables

• Own stack / registers
• Own thread-specific data

Lecture 03 - Parallel Limitations and Concepts University of Waterloo



Thread Model - 1:1 (Kernel-level Threading)

• Simplest possible threading implementation

• Only the kernel can schedule threads on different processors
• Required to take advantage of a multiprocessor system

• Context switching requires a system call

• Used by Win32, POSIX threads for Windows and Linux

• Allows concurrency and parallelism

Lecture 03 - Parallel Limitations and Concepts University of Waterloo



Thread Model - N:1 (User-level Threading)

• All application threads map to a single kernel thread

• Quick context switches, no need for system call

• Cannot use multiple processors, only for concurrency
• Why would you use them?

• Used by GNU Portable Threads

Lecture 03 - Parallel Limitations and Concepts University of Waterloo



Thread Model - M:N (Hybrid Threading)

• Maps M application threads to N kernel threads

• Compromise between the previous two models

• Quick context switches and can use multiple processors

• Increased complexity, library provides scheduling
• May not coordinate well with kernel
• Increases likelihood of priority inversion (which we’ll see later)

• Used by modern Windows threads

Lecture 03 - Parallel Limitations and Concepts University of Waterloo



Example System - Physical View

• Only one physical chip

Lecture 03 - Parallel Limitations and Concepts University of Waterloo



Example System - System View

jon@ece459 −1 ˜ % egrep ’ p r o c e s s o r | model name ’ / proc / c p u i n f o
p r o c e s s o r : 0
model name : I n t e l (R) Core (TM) i7 −2600K CPU @ 3.40GHz
p r o c e s s o r : 1
model name : I n t e l (R) Core (TM) i7 −2600K CPU @ 3.40GHz
p r o c e s s o r : 2
model name : I n t e l (R) Core (TM) i7 −2600K CPU @ 3.40GHz
p r o c e s s o r : 3
model name : I n t e l (R) Core (TM) i7 −2600K CPU @ 3.40GHz
p r o c e s s o r : 4
model name : I n t e l (R) Core (TM) i7 −2600K CPU @ 3.40GHz
p r o c e s s o r : 5
model name : I n t e l (R) Core (TM) i7 −2600K CPU @ 3.40GHz
p r o c e s s o r : 6
model name : I n t e l (R) Core (TM) i7 −2600K CPU @ 3.40GHz
p r o c e s s o r : 7
model name : I n t e l (R) Core (TM) i7 −2600K CPU @ 3.40GHz

• Many processors

Lecture 03 - Parallel Limitations and Concepts University of Waterloo



SMP (Symmetric Multiprocessing)

• Identical processors or cores

• Interconnected using buses or another type of communication

• Share main memory

• Most common type of multiprocessing system

Lecture 03 - Parallel Limitations and Concepts University of Waterloo



Example of an SMP System

Core

Core
Cache Rest of system

• Each core can execute a different thread
• Shared memory quickly becomes the bottleneck

Lecture 03 - Parallel Limitations and Concepts University of Waterloo



Executing of 2 Threads on a Single Core

Thread 1

Thread 2
Core Cache Rest of system

• On a single core, must context switch between threads
• Every number of cycles
• Wait until cache miss, or another long event

• Resources may be unused during execution
• Why not take advantage of this?

Lecture 03 - Parallel Limitations and Concepts University of Waterloo



SMT (Simultaneous Multithreading)

• Use any idle resources of a CPU (may be doing
calculations/waiting for memory) for another task

• Cannot improve if shared resources are the bottleneck

• Issue instructions for each thread per cycle

• To the OS, it looks a lot like SMP, but only up to 30%
performance improvement

• Intel implementation: Hyper-Threading

Lecture 03 - Parallel Limitations and Concepts University of Waterloo



NUMA (Non-Uniform Memory Access)

• In SMP, all CPUs have the same access time for resources

• In this case, CPUs can access different resources faster (not
just limited to memory)

• Schedule tasks to CPUs which can access resources faster

• Since memory is commonly the bottleneck, each CPU has it’s
own memory bank

Lecture 03 - Parallel Limitations and Concepts University of Waterloo



Processor Affinity

• Each task (process/thread) can be associated with a set of
processors

• Useful to take advantage of existing caches (either from the
last time the task ran or task uses the same data)

• Hyper-Threading is an example of complete affinity for both
threads on the same core

• May be better to use a different processor if current set is busy

Lecture 03 - Parallel Limitations and Concepts University of Waterloo


	Amdahl's Law
	Gustafson's Law
	Threads
	Types of Multiprocessing

