
Lecture 30 - High-Performance Languages
ECE 459: Programming for Performance

Jon Eyolfson

University of Waterloo

March 30, 2012

Course Summary

Assignment 4

• There’s only one OpenCL platform now, so you shouldn’t have
to worry

• Here are the following expected results:

jon@ece459 −1 ass ignment −04 % t ime . / nbody−seq > nbody −1. out
. / nbody−seq > nbody −1. out 11 .08 s u s e r 0 .00 s system

99% cpu 11.088 t o t a l
jon@ece459 −1 ass ignment −04 % t ime . / nbody > nbody −2. out
. / nbody > nbody −2. out 0 .16 s u s e r 0 .16 s system

99% cpu 0 .318 t o t a l

jon@ece459 −1 ass ignment −04 % d i f f −u nbody −1. out nbody −2. out
jon@ece459 −1 ass ignment −04 %

Hint: let local do it’s thing

Lecture 30 - High-Performance Languages University of Waterloo

Course Summary

Introduction

• DARPA began a supercomputing challenge in 2002

• Purpose to create multi petaflop systems (floating point
operations)

• Three notable programming language proposals
• X10 (IBM) [Looks like Java]
• Chapel (Cray) [Looks like Fortran/math]
• Fortress (Sun/Oracle)

Lecture 30 - High-Performance Languages University of Waterloo

Course Summary

Machine Model

• We’ve used multicore machines and talked about clusters
(MPI, MapReduce) these languages are targeted somewhere
in the middle

• They have thousands of cores and massive memory bandwidth

• They used a Partitioned Global Address Space (PGAS)
memory model

• Each process has a view of the global memory
• The memory is distributed across the nodes, however the

processors explicitly know what global memory is local

Lecture 30 - High-Performance Languages University of Waterloo

Course Summary

Parallelism

• These languages require you to specify the parallelism
structure

• Fortress evaluates loops and arguments in parallel by default

• Others use an explicit construct like forall and async

• Fortress divides memory into locations, which belong to
regions (which are in a hierachy, the closer the better
communication)

• Called different names: places (X11) and locacles (Chapel)

• These langauges make it easier to control the locality of data
structures and have distributed (fast) data

Lecture 30 - High-Performance Languages University of Waterloo

Course Summary

X10 Example

impor t x10 . i o . Conso l e ;
impor t x10 . u t i l . Random ;

c l a s s MontyPi {
p u b l i c s t a t i c d e f main (a r g s : Ar ray [S t r i n g] (1)) {

v a l N = I n t . p a r s e (a r g s (0)) ;
v a l r e s u l t=G l o b a l R e f [C e l l [Double]] (new C e l l [Double] (0)) ;
f i n i s h f o r (p i n P lace . p l a c e s ()) at (p) async {

v a l r = new Random () ;
va r myResult : Double = 0 ;
f o r (1 . . (N/ P lace .MAX_PLACES)) {

v a l x = r . nextDoub le () ;
v a l y = r . nextDoub le () ;
i f (x∗x + y∗y <= 1) myResult++;

}
v a l ans = myResult ;
a t (r e s u l t) atomic r e s u l t () () += ans ;

}
v a l p i = 4∗(r e s u l t () ()) /N;

}
}

Lecture 30 - High-Performance Languages University of Waterloo

Course Summary

X10 Example Explained

• It’s the same problem as Assignment 1, but gives a
distrubuted solution

• We could replace for (p in Place.places()) with for
(1..P) (where P is a number) for a parallel solution (you
would also remove GlobalRef)

• async creates a new child activity which executes the
statements

• finish waits for all the child asyncs to finish

• at performs the statement at the place specified, in this
example the processor that is holding the result increments its
value

Lecture 30 - High-Performance Languages University of Waterloo

Course Summary

Summary

• For supercomputers there are three notable languages: X10,
Fortress and Chapel

• The use the Partitioned Global Adress Space memory model,
which allows distrubited memory with explicit locality

• The parallel programming aspect to the languages are very
similar to everything else we’ve seen in the course

• Let’s do a quick course summary

Lecture 30 - High-Performance Languages University of Waterloo

Course Summary

Bandwidth and Latency

• These are the measures of performance we saw at the start of
the course

• Improving Bandwidth (tasks per unit time)
• Parallelism

• Improving Latency (time per task)
• Approximation algorithms
• Saving work on algorithms
• Better utilization of underlying hardware (brief review)
• Using better data structures

• All improvements require profiling to make sure they’re
actually improvements!

Lecture 30 - High-Performance Languages University of Waterloo

Course Summary

Limits to Parallelization

• There’s always some serial part which is going to limit the
amount of parallelization

• Amdahl’s Law provides an estimation for a fixed problem size

• Gustafson’s Law provides an estimation for a variable problem
size

Lecture 30 - High-Performance Languages University of Waterloo

Course Summary

Dependencies

• The main barrier for parallelization

• Different types of dependencies
• RAW - read after write
• WAR - write after read
• WAW - wrtie after write

• WAR and WAW can be broken by renaming/copying

• Speculation could also be used

Lecture 30 - High-Performance Languages University of Waterloo

Course Summary

Race Conditions and Synchronization

• Recall a race condition is when the same memory location
could be accessed at the same time, which one of the accesses
being a write

• We can protect against them with sychronization primitives
• Locks
• Semaphores
• Barriers

Lecture 30 - High-Performance Languages University of Waterloo

Course Summary

Parallel Programming

• We focused on thread programming using:
• Pthreads
• OpenMP

• Looked at detached threads, OpenMP sections, for loops, etc.

• Automatic parallelization

• Had to be aware of the memory model (different then locking)

• Memory fences

Lecture 30 - High-Performance Languages University of Waterloo

Course Summary

Compiler Optimizations

• Ran through a list of what optimizations are available and
what they do

• The simpler your code the better the optimizations the
compiler can make, and may be very complex

• Expected values of if statements, loop unrolling, SIMD
instructions

• The compiler is good at figuring out what to inline as well
(with profiler guided optimizations)

• Steps to PGO:
• Compile with -fprofile-generate
• Run your program with your test input
• Compile with -fprofile-use

Lecture 30 - High-Performance Languages University of Waterloo

Course Summary

GPU Programming

• We went over how to use OpenCL

• How to convert parallelizable code to being parallelized by the
GPU

• This is the focus of Assignment 4, and should show a huge
improvement depending on the problem

Lecture 30 - High-Performance Languages University of Waterloo

Course Summary

Distributed Systems

• These are massive computing systems running in a cluster (or
on the cloud)

• There’s approaches with shared-memory and messaging
passing

• We looked at two major
• MPI
• MapReduce

• Although we didn’t use them in an Assignment, we got a
high-level idea of their operation

Lecture 30 - High-Performance Languages University of Waterloo

Course Summary

Final Word

• Thanks! Hopefully it was enjoyable

• Although we didn’t use them in an Assignment, we got a
high-level idea of their operation

Lecture 30 - High-Performance Languages University of Waterloo

Course Summary

Monday’s Plan

• Monday will be a review session were I’ll be here to answer
any questions

• As always, you can also e-mail me or a TA to set up office
hours

Lecture 30 - High-Performance Languages University of Waterloo

	Course Summary

