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Previously

• Conditions where you would make multiple processes instead
of threads

• How to create, exit and join POSIX threads

• Remember, they are 1:1 with kernel threads and can run in
parallel on multiple CPUs

• The difference between joinable/detached threads

• Mutex usage
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Quick Blurb on Mutexes

• Mutexes simply ensure that if you succeed in calling lock
with a certain mutex, m1, you will have exclusive access to m1
until you unlock it

• Other calls to lock with the same mutex, m1, will wait until
it’s available

• If you want background on selection algorithms, look at
Lamport’s bakery algorithm, but you don’t have to know them
for this course

• Our focus is on how to use them correctly
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Three Address Code

• A representation of intermediate code used by compilers,
mostly used for analysis and optimization

• Statements represent one fundamental operation (for the
most part, we can consider each operation atomic)

• Useful to reason about data races and easier to read than
assembly (as long as you seperate out memory reads/writes)

• Statements have the form:
result := operand1 operator operand2
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GIMPLE

• GIMPLE is the three address code used by gcc

• To see the GIMPLE representation of your compilation use
the -fdump-tree-gimple flag

• To see all of the three address code generated by the compiler
use -fdump-tree-all, you’ll probably just be interested in
the optimized version

• Use this if you want to reason about your code at a low-level
without having to read assembly
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Overview of restrict

• “A new feature of C99: The restrict type qualifier allows
programs to be written so that translators can produce
significantly faster executables.”

• For C99 standard in gcc use the -std=c99 flag

• If you declare a pointer with restrict, you are ensuring to
the compiler that the pointer will never alias (another pointer
will not point to the same data) for the lifetime of the pointer
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Example of restrict (1)

• If you have a bunch of pointers declared with restrict, you
are saying that these will never point to the same data

• Below is the Wikipedia example, would declaring all these
pointers as restrict generate better code?

v o i d upda t ePt r s ( i n t ∗ ptrA , i n t ∗ ptrB , i n t ∗ v a l ) {
∗ ptrA += ∗ v a l ;
∗ ptrB += ∗ v a l ;

}
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Example of restrict (2)

• Let’s look at the GIMPLE instead

1 D.1609 = ∗ ptrA ;
2 D.1610 = ∗ v a l ;
3 D.1611 = D.1609 + D. 1 6 1 0 ;
4 ∗ ptrA = D. 1 6 1 1 ;
5 D.1612 = ∗ ptrB ;
6 D.1610 = ∗ v a l ;
7 D.1613 = D.1612 + D. 1 6 1 0 ;
8 ∗ ptrB = D. 1 6 1 3 ;

• Is there any operation here that could be left out if all the
pointers represent different data?
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Example of restrict (3)

• If ptrA and val are different pointers, you don’t have to
reload the data on line 6

• Otherwise you would since you could call
updatePtrs(&x, &y, &x);

• If you change the arguments to, you will get the optimized
version

v o i d upda t ePt r s ( i n t ∗ r e s t r i c t ptrA , i n t ∗ r e s t r i c t ptrB ,
i n t ∗ r e s t r i c t v a l )

• Note: you can get the optimization by just declaring ptrA and
val as restrict, ptrB isn’t needed for this optimization
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Summary of restrict

• Use restrict whenever you know the pointer will not alias
another pointer (also declare as restrict)

• The compiler is not able to know whether pointers alias, so
you must provide this

• This allows the compiler to do better optimization for your
code (and therefore run faster)

• Caveat: don’t lie to the compiler, or else you will get
undefined behaviour

• Aside: this not the same as const, const data can still be
changed through a different pointer
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Race Conditions

• Recall, a race happens when you have two concurrent accesses
to the same state, at least one of which is a write

• This is a problem because the final state will not be the same
as running one access to completion and then the other

• We should be worried about race conditions between any
variables which are shared between threads
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Example Data Race (1)

#i n c l u d e < s t d l i b . h>
#i n c l u d e <s t d i o . h>
#i n c l u d e <pth read . h>

v o i d ∗ run1 ( v o i d ∗ arg )
{

i n t ∗ x = ( i n t ∗) a rg ;
∗x += 1 ;

}

v o i d ∗ run2 ( v o i d ∗ arg )
{

i n t ∗ x = ( i n t ∗) a rg ;
∗x += 2 ;

}
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Example Data Race (2)

i n t main ( i n t argc , cha r ∗ a rgv [ ] )
{

i n t ∗ x = ma l l o c ( s i z e o f ( i n t ) ) ;
∗x = 1 ;
p t h r e a d t t1 , t2 ;
p t h r e a d c r e a t e (&t1 , NULL , &run1 , x ) ;
p t h r e a d j o i n ( t1 , NULL ) ;
p t h r e a d c r e a t e (&t2 , NULL , &run2 , x ) ;
p t h r e a d j o i n ( t2 , NULL ) ;
p r i n t f (”%d\n ” , ∗x ) ;
f r e e ( x ) ;
r e t u r n EXIT SUCCESS ;

}

• Do we have a data race? Why or why not?

• No, we don’t. Only one thread is active at a time
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Example Data Race (3)

i n t main ( i n t argc , cha r ∗ a rgv [ ] )
{

i n t ∗ x = ma l l o c ( s i z e o f ( i n t ) ) ;
∗x = 1 ;
p t h r e a d t t1 , t2 ;
p t h r e a d c r e a t e (&t1 , NULL , &run1 , x ) ;
p t h r e a d c r e a t e (&t2 , NULL , &run2 , x ) ;
p t h r e a d j o i n ( t1 , NULL ) ;
p t h r e a d j o i n ( t2 , NULL ) ;
p r i n t f (”%d\n ” , ∗x ) ;
f r e e ( x ) ;
r e t u r n EXIT SUCCESS ;

}

• Do we have a data race now? Why or why not?

• Yes, we do. We have 2 threads trying to access the same data
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Example Data Race (3)
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}

• Do we have a data race now? Why or why not?
• Yes, we do. We have 2 threads trying to access the same data
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Consequence of Example Data Race?

• What are the possible outputs? (initially *x is 1)

1 run1 run2
2 D. 1 = ∗x ; D. 1 = ∗x ;
3 D. 2 = D. 1 + 1 ; D. 2 = D. 1 + 2
4 ∗x = D. 2 ; ∗x = D. 2 ;

• Again, the important times to worry about in a data race are
the memory reads and writes
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Outcome of Example Data Race

• Let’s call the read and write from run1 R1 and W1 (R2 and
W2 from run2)

• The read, in a function, has to come before it’s write

All possible orderings:

Order *x
R1 W1 R2 W2 4
R1 R2 W1 W2 3
R1 R2 W2 W1 2
R2 W2 R1 W1 4
R2 R1 W2 W1 2
R2 R1 W1 W2 3
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Detecting Data Races Automatically

• There are also tools to help you find data races in your
program

• helgrind is one such tool, it runs your program on top of it
and analyzes it (it will however, cause a large slowdown)

• Run with valgrind --tool=helgrind <prog>
• It will warn you of possible data races along with locations
• For useful debugging locations, compile with debugging

information -g flag for gcc
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Helgrind Output for Example

==5036== P o s s i b l e data r a c e d u r i n g read o f s i z e 4 at
0 x53F2040 by t h r e a d #3

==5036== Locks h e l d : none
==5036== at 0 x400710 : run2 ( i n d a t a r a c e . c : 1 4 )
. . .

==5036==
==5036== This c o n f l i c t s w i th a p r e v i o u s w r i t e o f s i z e 4 by

t h r e a d #2
==5036== Locks h e l d : none
==5036== at 0 x400700 : run1 ( i n d a t a r a c e . c : 8 )
. . .

==5036==
==5036== Address 0 x53F2040 i s 0 b y t e s i n s i d e a b l o c k o f s i z e

4 a l l o c ’ d
. . .

==5036== by 0x4005AE : main ( i n d a t a r a c e . c : 1 9 )
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Spinlocks

• Functionally equivalent to mutex

• To use in Pthread’s, use pthread spinlock t,
pthread spin lock/pthread spin trylock and friends

• Until mutexes, spinlocks will repeatedly try the lock and will
not put the thread to sleep (so it can be used for another task)

• Good to use if your protected code is short

• Mutexes may be implemented as a combination between
spinning/sleeping (spin for a short time, then sleep)
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Read-Write Locks

• If there are only reads, there’s no datarace

• It might be the case that writes are rare

• With mutexes/spinlocks, you have to lock the data, even for a
read since you don’t know if a write could happen

• But, most of the time, reads can happen in parallel, as long as
there’s no write

• Multiple threads can hold a read lock
(pthread rwlock rdlock), but only one thread may hold a
write lock (pthread rwlock wrlock) and will wait until the
current readers are done
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Semaphores

• Semaphores have a value and can be used for signalling
between threads (initially set to any specified value)

• There may be as many threads with the semaphore as value
allows

• Two fundamental operations wait and post

• wait is like lock, it decrements the value
• If the value is 0, it will wait until the value is greater than 0

• post is like unlock, it increments the value
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Semaphores Usage

#i n c l u d e <semaphore . h>

i n t s e m i n i t ( sem t ∗sem , i n t pshared , un s i gned i n t v a l u e ) ;
i n t s e m d e s t r o y ( sem t ∗sem ) ;
i n t sem post ( sem t ∗sem ) ;
i n t sem wai t ( sem t ∗sem ) ;
i n t s e m t r y w a i t ( sem t ∗sem ) ;

• Also must link with -pthread (or -lrt on Solaris)
• All functions return 0 on success
• Same usage in terms of passing pointers
• How could you use as semaphore as a mutex?

• If the initial value is 1 and you use wait to lock and post to
unlock, it’s equivalent to a mutex
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Semaphores for Signalling
Here’s an example from the book, how would you make this always
print “Thread 1” then “Thread 2” using semaphores?
#i n c l u d e <pth read . h>
#i n c l u d e <s t d i o . h>
#i n c l u d e <semaphore . h>
#i n c l u d e < s t d l i b . h>

v o i d ∗ p1 ( v o i d ∗ arg ) { p r i n t f (” Thread 1\n ” ) ; }

v o i d ∗ p2 ( v o i d ∗ arg ) { p r i n t f (” Thread 2\n ” ) ; }

i n t main ( i n t argc , cha r ∗ a rgv [ ] )
{

p t h r e a d t t h r e a d [ 2 ] ;
p t h r e a d c r e a t e (& t h r e a d [ 0 ] , NULL , p1 , NULL ) ;
p t h r e a d c r e a t e (& t h r e a d [ 1 ] , NULL , p2 , NULL ) ;
p t h r e a d j o i n ( t h r e a d [ 0 ] , NULL ) ;
p t h r e a d j o i n ( t h r e a d [ 1 ] , NULL ) ;
r e t u r n EXIT SUCCESS ;

}
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Semaphores for Signalling
Here’s their solution, is this actually correct?
sem t sem ;
v o i d ∗ p1 ( v o i d ∗ arg ) {

p r i n t f (” Thread 1\n ” ) ;
sem post (&sem ) ;

}
v o i d ∗ p2 ( v o i d ∗ arg ) {

sem wai t (&sem ) ;
p r i n t f (” Thread 2\n ” ) ;

}

i n t main ( i n t argc , cha r ∗ a rgv [ ] )
{

p t h r e a d t t h r e a d [ 2 ] ;
s e m i n i t (&sem , 0 , 1 ) ;
p t h r e a d c r e a t e (& t h r e a d [ 0 ] , NULL , p1 , NULL ) ;
p t h r e a d c r e a t e (& t h r e a d [ 1 ] , NULL , p2 , NULL ) ;
p t h r e a d j o i n ( t h r e a d [ 0 ] , NULL ) ;
p t h r e a d j o i n ( t h r e a d [ 1 ] , NULL ) ;
s e m d e s t r o y (&sem ) ;

}
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Semaphores for Signalling

• value is initially 1

• p2 hits it’s sem wait first and succeeds

• value is now 0 and p2 prints “Thread 2”

• It doesn’t matter if p1 happens first, it would just increase
value to 2

• The solution is to set the initial value to 0

• In this case, if p2 hits it’s sem wait first it will wait until p1
posts, after it prints “Thread 1”
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