
Lecture 05 - restrict Keyword, Race
Conditions and More Synchronization

ECE 459: Programming for Performance

Jon Eyolfson

University of Waterloo

January 13, 2012

Previously

• Conditions where you would make multiple processes instead
of threads

• How to create, exit and join POSIX threads

• Remember, they are 1:1 with kernel threads and can run in
parallel on multiple CPUs

• The difference between joinable/detached threads

• Mutex usage

Lecture 05 - restrict Keyword, Race Conditions and More Synchronization University of Waterloo

Quick Blurb on Mutexes

• Mutexes simply ensure that if you succeed in calling lock
with a certain mutex, m1, you will have exclusive access to m1
until you unlock it

• Other calls to lock with the same mutex, m1, will wait until
it’s available

• If you want background on selection algorithms, look at
Lamport’s bakery algorithm, but you don’t have to know them
for this course

• Our focus is on how to use them correctly

Lecture 05 - restrict Keyword, Race Conditions and More Synchronization University of Waterloo

http://en.wikipedia.org/wiki/Lamport%27s_bakery_algorithm

Three Address Code

• A representation of intermediate code used by compilers,
mostly used for analysis and optimization

• Statements represent one fundamental operation (for the
most part, we can consider each operation atomic)

• Useful to reason about data races and easier to read than
assembly (as long as you seperate out memory reads/writes)

• Statements have the form:
result := operand1 operator operand2

Lecture 05 - restrict Keyword, Race Conditions and More Synchronization University of Waterloo

GIMPLE

• GIMPLE is the three address code used by gcc

• To see the GIMPLE representation of your compilation use
the -fdump-tree-gimple flag

• To see all of the three address code generated by the compiler
use -fdump-tree-all, you’ll probably just be interested in
the optimized version

• Use this if you want to reason about your code at a low-level
without having to read assembly

Lecture 05 - restrict Keyword, Race Conditions and More Synchronization University of Waterloo

Overview of restrict

• “A new feature of C99: The restrict type qualifier allows
programs to be written so that translators can produce
significantly faster executables.”

• For C99 standard in gcc use the -std=c99 flag

• If you declare a pointer with restrict, you are ensuring to
the compiler that the pointer will never alias (another pointer
will not point to the same data) for the lifetime of the pointer

Lecture 05 - restrict Keyword, Race Conditions and More Synchronization University of Waterloo

Example of restrict (1)

• If you have a bunch of pointers declared with restrict, you
are saying that these will never point to the same data

• Below is the Wikipedia example, would declaring all these
pointers as restrict generate better code?

v o i d upda t ePt r s (i n t ∗ ptrA , i n t ∗ ptrB , i n t ∗ v a l) {
∗ ptrA += ∗ v a l ;
∗ ptrB += ∗ v a l ;

}

Lecture 05 - restrict Keyword, Race Conditions and More Synchronization University of Waterloo

Example of restrict (2)

• Let’s look at the GIMPLE instead

1 D.1609 = ∗ ptrA ;
2 D.1610 = ∗ v a l ;
3 D.1611 = D.1609 + D. 1 6 1 0 ;
4 ∗ ptrA = D. 1 6 1 1 ;
5 D.1612 = ∗ ptrB ;
6 D.1610 = ∗ v a l ;
7 D.1613 = D.1612 + D. 1 6 1 0 ;
8 ∗ ptrB = D. 1 6 1 3 ;

• Is there any operation here that could be left out if all the
pointers represent different data?

Lecture 05 - restrict Keyword, Race Conditions and More Synchronization University of Waterloo

Example of restrict (3)

• If ptrA and val are different pointers, you don’t have to
reload the data on line 6

• Otherwise you would since you could call
updatePtrs(&x, &y, &x);

• If you change the arguments to, you will get the optimized
version

v o i d upda t ePt r s (i n t ∗ r e s t r i c t ptrA , i n t ∗ r e s t r i c t ptrB ,
i n t ∗ r e s t r i c t v a l)

• Note: you can get the optimization by just declaring ptrA and
val as restrict, ptrB isn’t needed for this optimization

Lecture 05 - restrict Keyword, Race Conditions and More Synchronization University of Waterloo

Summary of restrict

• Use restrict whenever you know the pointer will not alias
another pointer (also declare as restrict)

• The compiler is not able to know whether pointers alias, so
you must provide this

• This allows the compiler to do better optimization for your
code (and therefore run faster)

• Caveat: don’t lie to the compiler, or else you will get
undefined behaviour

• Aside: this not the same as const, const data can still be
changed through a different pointer

Lecture 05 - restrict Keyword, Race Conditions and More Synchronization University of Waterloo

Race Conditions

• Recall, a race happens when you have two concurrent accesses
to the same state, at least one of which is a write

• This is a problem because the final state will not be the same
as running one access to completion and then the other

• We should be worried about race conditions between any
variables which are shared between threads

Lecture 05 - restrict Keyword, Race Conditions and More Synchronization University of Waterloo

Example Data Race (1)

#i n c l u d e < s t d l i b . h>
#i n c l u d e <s t d i o . h>
#i n c l u d e <pth read . h>

v o i d ∗ run1 (v o i d ∗ arg)
{

i n t ∗ x = (i n t ∗) a rg ;
∗x += 1 ;

}

v o i d ∗ run2 (v o i d ∗ arg)
{

i n t ∗ x = (i n t ∗) a rg ;
∗x += 2 ;

}

Lecture 05 - restrict Keyword, Race Conditions and More Synchronization University of Waterloo

Example Data Race (2)

i n t main (i n t argc , cha r ∗ a rgv [])
{

i n t ∗ x = ma l l o c (s i z e o f (i n t)) ;
∗x = 1 ;
p t h r e a d t t1 , t2 ;
p t h r e a d c r e a t e (&t1 , NULL , &run1 , x) ;
p t h r e a d j o i n (t1 , NULL) ;
p t h r e a d c r e a t e (&t2 , NULL , &run2 , x) ;
p t h r e a d j o i n (t2 , NULL) ;
p r i n t f (”%d\n ” , ∗x) ;
f r e e (x) ;
r e t u r n EXIT SUCCESS ;

}

• Do we have a data race? Why or why not?

• No, we don’t. Only one thread is active at a time

Lecture 05 - restrict Keyword, Race Conditions and More Synchronization University of Waterloo

Example Data Race (2)

i n t main (i n t argc , cha r ∗ a rgv [])
{

i n t ∗ x = ma l l o c (s i z e o f (i n t)) ;
∗x = 1 ;
p t h r e a d t t1 , t2 ;
p t h r e a d c r e a t e (&t1 , NULL , &run1 , x) ;
p t h r e a d j o i n (t1 , NULL) ;
p t h r e a d c r e a t e (&t2 , NULL , &run2 , x) ;
p t h r e a d j o i n (t2 , NULL) ;
p r i n t f (”%d\n ” , ∗x) ;
f r e e (x) ;
r e t u r n EXIT SUCCESS ;

}

• Do we have a data race? Why or why not?
• No, we don’t. Only one thread is active at a time

Lecture 05 - restrict Keyword, Race Conditions and More Synchronization University of Waterloo

Example Data Race (3)

i n t main (i n t argc , cha r ∗ a rgv [])
{

i n t ∗ x = ma l l o c (s i z e o f (i n t)) ;
∗x = 1 ;
p t h r e a d t t1 , t2 ;
p t h r e a d c r e a t e (&t1 , NULL , &run1 , x) ;
p t h r e a d c r e a t e (&t2 , NULL , &run2 , x) ;
p t h r e a d j o i n (t1 , NULL) ;
p t h r e a d j o i n (t2 , NULL) ;
p r i n t f (”%d\n ” , ∗x) ;
f r e e (x) ;
r e t u r n EXIT SUCCESS ;

}

• Do we have a data race now? Why or why not?

• Yes, we do. We have 2 threads trying to access the same data

Lecture 05 - restrict Keyword, Race Conditions and More Synchronization University of Waterloo

Example Data Race (3)

i n t main (i n t argc , cha r ∗ a rgv [])
{

i n t ∗ x = ma l l o c (s i z e o f (i n t)) ;
∗x = 1 ;
p t h r e a d t t1 , t2 ;
p t h r e a d c r e a t e (&t1 , NULL , &run1 , x) ;
p t h r e a d c r e a t e (&t2 , NULL , &run2 , x) ;
p t h r e a d j o i n (t1 , NULL) ;
p t h r e a d j o i n (t2 , NULL) ;
p r i n t f (”%d\n ” , ∗x) ;
f r e e (x) ;
r e t u r n EXIT SUCCESS ;

}

• Do we have a data race now? Why or why not?
• Yes, we do. We have 2 threads trying to access the same data

Lecture 05 - restrict Keyword, Race Conditions and More Synchronization University of Waterloo

Consequence of Example Data Race?

• What are the possible outputs? (initially *x is 1)

1 run1 run2
2 D. 1 = ∗x ; D. 1 = ∗x ;
3 D. 2 = D. 1 + 1 ; D. 2 = D. 1 + 2
4 ∗x = D. 2 ; ∗x = D. 2 ;

• Again, the important times to worry about in a data race are
the memory reads and writes

Lecture 05 - restrict Keyword, Race Conditions and More Synchronization University of Waterloo

Outcome of Example Data Race

• Let’s call the read and write from run1 R1 and W1 (R2 and
W2 from run2)

• The read, in a function, has to come before it’s write

All possible orderings:

Order *x
R1 W1 R2 W2 4
R1 R2 W1 W2 3
R1 R2 W2 W1 2
R2 W2 R1 W1 4
R2 R1 W2 W1 2
R2 R1 W1 W2 3

Lecture 05 - restrict Keyword, Race Conditions and More Synchronization University of Waterloo

Detecting Data Races Automatically

• There are also tools to help you find data races in your
program

• helgrind is one such tool, it runs your program on top of it
and analyzes it (it will however, cause a large slowdown)

• Run with valgrind --tool=helgrind <prog>
• It will warn you of possible data races along with locations
• For useful debugging locations, compile with debugging

information -g flag for gcc

Lecture 05 - restrict Keyword, Race Conditions and More Synchronization University of Waterloo

Helgrind Output for Example

==5036== P o s s i b l e data r a c e d u r i n g read o f s i z e 4 at
0 x53F2040 by t h r e a d #3

==5036== Locks h e l d : none
==5036== at 0 x400710 : run2 (i n d a t a r a c e . c : 1 4)
. . .

==5036==
==5036== This c o n f l i c t s w i th a p r e v i o u s w r i t e o f s i z e 4 by

t h r e a d #2
==5036== Locks h e l d : none
==5036== at 0 x400700 : run1 (i n d a t a r a c e . c : 8)
. . .

==5036==
==5036== Address 0 x53F2040 i s 0 b y t e s i n s i d e a b l o c k o f s i z e

4 a l l o c ’ d
. . .

==5036== by 0x4005AE : main (i n d a t a r a c e . c : 1 9)

Lecture 05 - restrict Keyword, Race Conditions and More Synchronization University of Waterloo

Spinlocks

• Functionally equivalent to mutex

• To use in Pthread’s, use pthread spinlock t,
pthread spin lock/pthread spin trylock and friends

• Until mutexes, spinlocks will repeatedly try the lock and will
not put the thread to sleep (so it can be used for another task)

• Good to use if your protected code is short

• Mutexes may be implemented as a combination between
spinning/sleeping (spin for a short time, then sleep)

Lecture 05 - restrict Keyword, Race Conditions and More Synchronization University of Waterloo

Read-Write Locks

• If there are only reads, there’s no datarace

• It might be the case that writes are rare

• With mutexes/spinlocks, you have to lock the data, even for a
read since you don’t know if a write could happen

• But, most of the time, reads can happen in parallel, as long as
there’s no write

• Multiple threads can hold a read lock
(pthread rwlock rdlock), but only one thread may hold a
write lock (pthread rwlock wrlock) and will wait until the
current readers are done

Lecture 05 - restrict Keyword, Race Conditions and More Synchronization University of Waterloo

Semaphores

• Semaphores have a value and can be used for signalling
between threads (initially set to any specified value)

• There may be as many threads with the semaphore as value
allows

• Two fundamental operations wait and post

• wait is like lock, it decrements the value
• If the value is 0, it will wait until the value is greater than 0

• post is like unlock, it increments the value

Lecture 05 - restrict Keyword, Race Conditions and More Synchronization University of Waterloo

Semaphores Usage

#i n c l u d e <semaphore . h>

i n t s e m i n i t (sem t ∗sem , i n t pshared , un s i gned i n t v a l u e) ;
i n t s e m d e s t r o y (sem t ∗sem) ;
i n t sem post (sem t ∗sem) ;
i n t sem wai t (sem t ∗sem) ;
i n t s e m t r y w a i t (sem t ∗sem) ;

• Also must link with -pthread (or -lrt on Solaris)
• All functions return 0 on success
• Same usage in terms of passing pointers
• How could you use as semaphore as a mutex?

• If the initial value is 1 and you use wait to lock and post to
unlock, it’s equivalent to a mutex

Lecture 05 - restrict Keyword, Race Conditions and More Synchronization University of Waterloo

Semaphores Usage

#i n c l u d e <semaphore . h>

i n t s e m i n i t (sem t ∗sem , i n t pshared , un s i gned i n t v a l u e) ;
i n t s e m d e s t r o y (sem t ∗sem) ;
i n t sem post (sem t ∗sem) ;
i n t sem wai t (sem t ∗sem) ;
i n t s e m t r y w a i t (sem t ∗sem) ;

• Also must link with -pthread (or -lrt on Solaris)
• All functions return 0 on success
• Same usage in terms of passing pointers
• How could you use as semaphore as a mutex?
• If the initial value is 1 and you use wait to lock and post to

unlock, it’s equivalent to a mutex

Lecture 05 - restrict Keyword, Race Conditions and More Synchronization University of Waterloo

Semaphores for Signalling
Here’s an example from the book, how would you make this always
print “Thread 1” then “Thread 2” using semaphores?
#i n c l u d e <pth read . h>
#i n c l u d e <s t d i o . h>
#i n c l u d e <semaphore . h>
#i n c l u d e < s t d l i b . h>

v o i d ∗ p1 (v o i d ∗ arg) { p r i n t f (” Thread 1\n ”) ; }

v o i d ∗ p2 (v o i d ∗ arg) { p r i n t f (” Thread 2\n ”) ; }

i n t main (i n t argc , cha r ∗ a rgv [])
{

p t h r e a d t t h r e a d [2] ;
p t h r e a d c r e a t e (& t h r e a d [0] , NULL , p1 , NULL) ;
p t h r e a d c r e a t e (& t h r e a d [1] , NULL , p2 , NULL) ;
p t h r e a d j o i n (t h r e a d [0] , NULL) ;
p t h r e a d j o i n (t h r e a d [1] , NULL) ;
r e t u r n EXIT SUCCESS ;

}

Lecture 05 - restrict Keyword, Race Conditions and More Synchronization University of Waterloo

Semaphores for Signalling
Here’s their solution, is this actually correct?
sem t sem ;
v o i d ∗ p1 (v o i d ∗ arg) {

p r i n t f (” Thread 1\n ”) ;
sem post (&sem) ;

}
v o i d ∗ p2 (v o i d ∗ arg) {

sem wai t (&sem) ;
p r i n t f (” Thread 2\n ”) ;

}

i n t main (i n t argc , cha r ∗ a rgv [])
{

p t h r e a d t t h r e a d [2] ;
s e m i n i t (&sem , 0 , 1) ;
p t h r e a d c r e a t e (& t h r e a d [0] , NULL , p1 , NULL) ;
p t h r e a d c r e a t e (& t h r e a d [1] , NULL , p2 , NULL) ;
p t h r e a d j o i n (t h r e a d [0] , NULL) ;
p t h r e a d j o i n (t h r e a d [1] , NULL) ;
s e m d e s t r o y (&sem) ;

}

Lecture 05 - restrict Keyword, Race Conditions and More Synchronization University of Waterloo

Semaphores for Signalling

• value is initially 1

• p2 hits it’s sem wait first and succeeds

• value is now 0 and p2 prints “Thread 2”

• It doesn’t matter if p1 happens first, it would just increase
value to 2

• The solution is to set the initial value to 0

• In this case, if p2 hits it’s sem wait first it will wait until p1
posts, after it prints “Thread 1”

Lecture 05 - restrict Keyword, Race Conditions and More Synchronization University of Waterloo

Semaphores for Signalling

• value is initially 1

• p2 hits it’s sem wait first and succeeds

• value is now 0 and p2 prints “Thread 2”

• It doesn’t matter if p1 happens first, it would just increase
value to 2

• The solution is to set the initial value to 0

• In this case, if p2 hits it’s sem wait first it will wait until p1
posts, after it prints “Thread 1”

Lecture 05 - restrict Keyword, Race Conditions and More Synchronization University of Waterloo

