
Lecture 06 - Dependencies
ECE 459: Programming for Performance

Jon Eyolfson

University of Waterloo

January 16, 2012

Memory-carried Dependencies Loop-carried Dependencies

Previously

• We saw race conditions and how to remedy them with
synchronization

• I forgot to mention barriers too, useful if you want threads to
wait at a certain point in execution for x other threads to
finish

• pthread barrier t, with init (takes as a parameter how
many threads it should wait for) and destroy

• Also has wait which is similar to a join that will wait for the
specified number of threads to arrive at the barrier

Lecture 06 - Dependencies University of Waterloo

Memory-carried Dependencies Loop-carried Dependencies

Today

• I talked before about dependencies being the main limitation
to parallelization

• Basically, when a computation has to be evaulated as XY
instead of YX

• We are just going to assume there is no synchronization
problems for these examples (although they exist too)

• Only trying to identify code that is safe to run in parallel

Lecture 06 - Dependencies University of Waterloo

Memory-carried Dependencies Loop-carried Dependencies

Memory-carried Dependencies

• Dependencies limit the amount of parallelization in a program

Can we execute these 2 lines in parallel?
x = 42
x = x + 1

No

• What are the possible outcomes? (x is initially 1)
x = 43 or x = 42

Lecture 06 - Dependencies University of Waterloo

Memory-carried Dependencies Loop-carried Dependencies

Memory-carried Dependencies

• Dependencies limit the amount of parallelization in a program

Can we execute these 2 lines in parallel?
x = 42
x = x + 1

No

• What are the possible outcomes? (x is initially 1)

x = 43 or x = 42

Lecture 06 - Dependencies University of Waterloo

Memory-carried Dependencies Loop-carried Dependencies

Memory-carried Dependencies

• Dependencies limit the amount of parallelization in a program

Can we execute these 2 lines in parallel?
x = 42
x = x + 1

No

• What are the possible outcomes? (x is initially 1)
x = 43 or x = 42

Lecture 06 - Dependencies University of Waterloo

Memory-carried Dependencies Loop-carried Dependencies

Read After Read (RAR)

Can we execute these 2 lines in parallel? (initially x is 2)
y = x + 1
z = x + 5

Yes

• The variables y and z are independent
• Variable x is only read

Lecture 06 - Dependencies University of Waterloo

Memory-carried Dependencies Loop-carried Dependencies

Read After Read (RAR)

Can we execute these 2 lines in parallel? (initially x is 2)
y = x + 1
z = x + 5

Yes

• The variables y and z are independent
• Variable x is only read

Lecture 06 - Dependencies University of Waterloo

Memory-carried Dependencies Loop-carried Dependencies

Read After Write (RAW)

What about these 2 lines? (again, initially x is 2)
x = 37
z = x + 5

No, z = 42 or z = 7

• We cannot change the order
• Also known as a true dependency

Lecture 06 - Dependencies University of Waterloo

Memory-carried Dependencies Loop-carried Dependencies

Read After Write (RAW)

What about these 2 lines? (again, initially x is 2)
x = 37
z = x + 5

No, z = 42 or z = 7

• We cannot change the order
• Also known as a true dependency

Lecture 06 - Dependencies University of Waterloo

Memory-carried Dependencies Loop-carried Dependencies

Write After Read (WAR)

What if we change the order? (again, initially x is 2)
z = x + 5
x = 37

No, again, z = 42 or z = 7

• Also known as a anti-dependency
• We can modify the code to run these lines in parallel

Lecture 06 - Dependencies University of Waterloo

Memory-carried Dependencies Loop-carried Dependencies

Write After Read (WAR)

What if we change the order? (again, initially x is 2)
z = x + 5
x = 37

No, again, z = 42 or z = 7

• Also known as a anti-dependency
• We can modify the code to run these lines in parallel

Lecture 06 - Dependencies University of Waterloo

Memory-carried Dependencies Loop-carried Dependencies

Removing Write After Read (WAR) Dependency

Make a copy of the variable
x copy = x
z = x copy + 5
x = 37

We can run the 2 lines in parallel now

• There is now true dependency (RAW) between the 2 lines
• Why is this useful?

z = v e r y l o n g f u n c t i o n (x) + 5
x = v e r y l o n g c a l c u l a t i o n ()

Lecture 06 - Dependencies University of Waterloo

Memory-carried Dependencies Loop-carried Dependencies

Removing Write After Read (WAR) Dependency

Make a copy of the variable
x copy = x
z = x copy + 5
x = 37

We can run the 2 lines in parallel now

• There is now true dependency (RAW) between the 2 lines
• Why is this useful?

z = v e r y l o n g f u n c t i o n (x) + 5
x = v e r y l o n g c a l c u l a t i o n ()

Lecture 06 - Dependencies University of Waterloo

Memory-carried Dependencies Loop-carried Dependencies

Removing Write After Read (WAR) Dependency

Make a copy of the variable
x copy = x
z = x copy + 5
x = 37

We can run the 2 lines in parallel now

• There is now true dependency (RAW) between the 2 lines
• Why is this useful?

z = v e r y l o n g f u n c t i o n (x) + 5
x = v e r y l o n g c a l c u l a t i o n ()

Lecture 06 - Dependencies University of Waterloo

Memory-carried Dependencies Loop-carried Dependencies

Write After Write (WAW)

Can we run these lines in parallel? (initially x is 2)
z = x + 5
z = x + 40

Nope, z = 42 or z = 7

• Also known as a output dependency
• We may remove this dependency (similar to WAR)

z copy = x + 5
z = x + 40

Lecture 06 - Dependencies University of Waterloo

Memory-carried Dependencies Loop-carried Dependencies

Write After Write (WAW)

Can we run these lines in parallel? (initially x is 2)
z = x + 5
z = x + 40

Nope, z = 42 or z = 7

• Also known as a output dependency
• We may remove this dependency (similar to WAR)

z copy = x + 5
z = x + 40

Lecture 06 - Dependencies University of Waterloo

Memory-carried Dependencies Loop-carried Dependencies

Write After Write (WAW)

Can we run these lines in parallel? (initially x is 2)
z = x + 5
z = x + 40

Nope, z = 42 or z = 7

• Also known as a output dependency
• We may remove this dependency (similar to WAR)

z copy = x + 5
z = x + 40

Lecture 06 - Dependencies University of Waterloo

Memory-carried Dependencies Loop-carried Dependencies

Summary of Memory-carried Dependencies

Second Access
Read Write

First Access Read No Dependency
Read After Read
(RAR)

Anti-dependency
Write After Read
(WAR)

Write True Dependency
Read After Write
(RAW)

Output Dependency
Write After Write
(WAW)

Lecture 06 - Dependencies University of Waterloo

Memory-carried Dependencies Loop-carried Dependencies

Loop-carried Dependencies (1)

Can we run these lines in parallel? (initially a[0] and a[1] are 1)
a [4] = a [0] + 1
a [5] = a [1] + 2

Yes

• There are no dependencies between these lines
• However, this is not how we normally use arrays...

Lecture 06 - Dependencies University of Waterloo

Memory-carried Dependencies Loop-carried Dependencies

Loop-carried Dependencies (1)

Can we run these lines in parallel? (initially a[0] and a[1] are 1)
a [4] = a [0] + 1
a [5] = a [1] + 2

Yes

• There are no dependencies between these lines
• However, this is not how we normally use arrays...

Lecture 06 - Dependencies University of Waterloo

Memory-carried Dependencies Loop-carried Dependencies

Loop-carried Dependencies (2)

What about this? (all elements are initially 1)
f o r (i n t i = 1 ; i < 12 ; ++i)

a [i] = a [i −1] + 1

No, a[2] = 3 or a[2] = 2

• Statements are dependent on the previous iteration of the loop
• This is an example of a loop-carried dependency

Lecture 06 - Dependencies University of Waterloo

Memory-carried Dependencies Loop-carried Dependencies

Loop-carried Dependencies (2)

What about this? (all elements are initially 1)
f o r (i n t i = 1 ; i < 12 ; ++i)

a [i] = a [i −1] + 1

No, a[2] = 3 or a[2] = 2

• Statements are dependent on the previous iteration of the loop
• This is an example of a loop-carried dependency

Lecture 06 - Dependencies University of Waterloo

Memory-carried Dependencies Loop-carried Dependencies

Loop-carried Dependencies (3)

Can we parallelize this loop? (again, all elements are initially 1)
f o r (i n t i = 4 ; i < 12 ; ++i)

a [i] = a [i −4] + 1

Yes, to a degree

• We can execute 4 statements in parallel
• a[4] = a[0] + 1, a[8] = a[4] + 1
• a[5] = a[1] + 1, a[9] = a[5] + 1
• a[6] = a[2] + 1, a[10] = a[6] + 1
• a[7] = a[3] + 1, a[11] = a[7] + 1

Always consider the dependencies between iterations

Lecture 06 - Dependencies University of Waterloo

Memory-carried Dependencies Loop-carried Dependencies

Loop-carried Dependencies (3)

Can we parallelize this loop? (again, all elements are initially 1)
f o r (i n t i = 4 ; i < 12 ; ++i)

a [i] = a [i −4] + 1

Yes, to a degree

• We can execute 4 statements in parallel
• a[4] = a[0] + 1, a[8] = a[4] + 1
• a[5] = a[1] + 1, a[9] = a[5] + 1
• a[6] = a[2] + 1, a[10] = a[6] + 1
• a[7] = a[3] + 1, a[11] = a[7] + 1

Always consider the dependencies between iterations

Lecture 06 - Dependencies University of Waterloo

Memory-carried Dependencies Loop-carried Dependencies

Loop-carried Dependencies (3)

Can we parallelize this loop? (again, all elements are initially 1)
f o r (i n t i = 4 ; i < 12 ; ++i)

a [i] = a [i −4] + 1

Yes, to a degree

• We can execute 4 statements in parallel
• a[4] = a[0] + 1, a[8] = a[4] + 1
• a[5] = a[1] + 1, a[9] = a[5] + 1
• a[6] = a[2] + 1, a[10] = a[6] + 1
• a[7] = a[3] + 1, a[11] = a[7] + 1

Always consider the dependencies between iterations

Lecture 06 - Dependencies University of Waterloo

Memory-carried Dependencies Loop-carried Dependencies

Summary

• Identify memory-carried dependencies
• 3 types of dependencies (RAW, WAR, WAW)

• How to remove output and anti-dependencies

• Identify loop-carried dependencies
• Explain dependencies between iterations

Lecture 06 - Dependencies University of Waterloo

	Memory-carried Dependencies
	Loop-carried Dependencies

