
Lecture 07 - Speculation and Parallelization
Patterns

ECE 459: Programming for Performance

Jon Eyolfson

University of Waterloo

January 18, 2012

Speculation SIMD Parallelization Patterns

Breaking Dependencies

• Recall that computer architects use speculation to predict
branch targets

• This gets around having to wait for the branch to be
evaluated until you can continue doing useful work

• We can also use speculation at a coarser-grained level and
speculatlively parallelize code

• We’ll see two ways: speculative execution and value
speculation

Lecture 07 - Speculation and Parallelization Patterns University of Waterloo

Speculation SIMD Parallelization Patterns

Example

Consider the following code:
v o i d doWork (i n t x , i n t y) {

i n t v a l u e = l o n g C a l c u l a t i o n (x , y) ;
i f (v a l u e > t h r e s h o l d) {

r e t u r n v a l u e + s e c o n d L o n g C a l c u l a t i o n (x , y) ;
}
e l s e {

r e t u r n v a l u e ;
}

}

Obviously, we don’t know whether or not we’ll have to do
secondLongCalculation

• Could we execute longCalculation and
secondLongCalculation in parallel if we didn’t have the
conditional?

Lecture 07 - Speculation and Parallelization Patterns University of Waterloo

Speculation SIMD Parallelization Patterns

Example with Speculative Execution
Well yes, we could, consider this pseudocode:
v o i d doWork (i n t x , i n t y) {

t h r e a d t t1 , t2 ;
p o i n t p (x , y) ;
i n t v1 , v2 ;
t h r e a d c r e a t e (&t1 , NULL , &l o n g C a l c u l a t i o n , &p) ;
t h r e a d c r e a t e (&t2 , NULL , &s e c o n d L o n g C a l c u l a t i o n , &p) ;
t h r e a d j o i n (t1 , &v1) ;
t h r e a d j o i n (t2 , &v2) ;
i f (v1 > t h r e s h o l d) {

r e t u r n v1 + v2 ;
} e l s e {

r e t u r n v1 ;
}

}

We do both the calculations in parallel and return the same result
as before

• When is this code faster? Slower? How could you improve?
Lecture 07 - Speculation and Parallelization Patterns University of Waterloo

Speculation SIMD Parallelization Patterns

Example Formulas for Speculative Execution

Let T1 be the time to run longCalculatuion
Let T2 be the time to run secondLongCalculatuion
Let p be the probability that secondLongCalculatuion executes

In the normal case we have:

T = T1 + pT2

Let S be the synchronization overhead

Our speculative code takes:

T = max(T1, T2) + S

Lecture 07 - Speculation and Parallelization Patterns University of Waterloo

Speculation SIMD Parallelization Patterns

Another Example

Consider the following code:
v o i d doWork (i n t x , i n t y) {

i n t v a l u e = l o n g C a l c u l a t i o n (x , y) ;
r e t u r n s e c o n d L o n g C a l c u l a t i o n (v a l u e) ;

}

Now we have a true dependency and can’t do the same strategy as
before

• If the value is predictable however, we can execute
secondLongCalculation based on a predicted value

Lecture 07 - Speculation and Parallelization Patterns University of Waterloo

Speculation SIMD Parallelization Patterns

Example with Value Speculation

Consider this pseudocode:
v o i d doWork (i n t x , i n t y) {

t h r e a d t t1 , t2 ;
p o i n t p (x , y) ;
i n t v1 , v2 , l a s t v a l u e ;
t h r e a d c r e a t e (&t1 , NULL , &l o n g C a l c u l a t i o n , &p) ;
t h r e a d c r e a t e (&t2 , NULL , &s e c o n d L o n g C a l c u l a t i o n ,

&l a s t v a l u e) ;
t h r e a d j o i n (t1 , &v1) ;
t h r e a d j o i n (t2 , &v2) ;
i f (v1 == l a s t v a l u e) {

r e t u r n v2 ;
} e l s e {

l a s t v a l u e = v1 ;
r e t u r n s e c o n d L o n g C a l c u l a t i o n (v1) ;

}
}

Similar to memoization (except with parallelization thrown in)

Lecture 07 - Speculation and Parallelization Patterns University of Waterloo

Speculation SIMD Parallelization Patterns

Example Formulas for Value Speculation

Let T1 be the time to run longCalculatuion
Let T2 be the time to run secondLongCalculatuion
Let p be the probability that secondLongCalculatuion executes
Let S be the synchronization overhead

In the normal case we have:

T = T1 + pT2

Our speculative code takes:

T = max(T1, T2) + S + pT2

Lecture 07 - Speculation and Parallelization Patterns University of Waterloo

Speculation SIMD Parallelization Patterns

Other Considerations

In order for this to be safe to parallelize we must meet these
conditions:

• longCalculation and secondLongCalculation must not
call each other

• The implementation of secondLongCalculation must not
depend on any values set or modified by longCalculation

• The return value of longCalculation must be deterministic

• Always consider the side effects of any function calls you make

Lecture 07 - Speculation and Parallelization Patterns University of Waterloo

Speculation SIMD Parallelization Patterns

Critical Paths

• Should be familiar with critcal paths from other course (Gantt
charts)

Consider the following diagram:

Start S1 S2 FinishA B D

C

• B depends on A, C has no dependencies and D depends on B
and C

• You can execute A and B in parallel with C
• Should always have this in mind when calculating speedups for

more complex programs

Lecture 07 - Speculation and Parallelization Patterns University of Waterloo

Speculation SIMD Parallelization Patterns

Data and Task Parallelism

• Data parallelism is performing the same operations on
different input

• Example: doubling all elements of an array

• Task parallelism is performing different operations on separate
input

• Example: playing a video file, one thread for decompressing
frames and another for rendering

Lecture 07 - Speculation and Parallelization Patterns University of Waterloo

Speculation SIMD Parallelization Patterns

Single Instruction, Multiple Data

• We’ll focus more on SIMD later in the course, but it’s good to
know

• Intructions, obviously, work on a bunch of data simultaneously
(the exact number is hardware dependent)

• Data is understood in blocks, so you can load a bunch and
perform some arithmetic

• For x86 class CPUs, these instructions are provided from
MMX and SSE

Lecture 07 - Speculation and Parallelization Patterns University of Waterloo

Speculation SIMD Parallelization Patterns

SIMD Example

Consider the following code:
v o i d vadd (doub l e ∗ r e s t r i c t a , doub l e ∗ r e s t r i c t b , i n t count) {

f o r (i n t i = 0 ; i < count ; i ++)
a [i] += b [i] ;

}

• In this scenario, we have the same operation over block data

• We could divide this up as well using threads, but can also use
SIMD

Lecture 07 - Speculation and Parallelization Patterns University of Waterloo

Speculation SIMD Parallelization Patterns

SIMD Example - Assembly without SIMD

If we compile this without SIMD instructions on an x86, we might
get this:
l oop :

f l d l (%edx)
f a d d l (%ecx)
f s t p l (%edx)
add l 8 , %edx
add l 8 , %ecx
add l 1 , %e s i
cmp %eax , %e s i
j l e l oop

• Simply just loads, adds, writes and increments

Lecture 07 - Speculation and Parallelization Patterns University of Waterloo

Speculation SIMD Parallelization Patterns

SIMD Example - Assembly with SIMD

We can instead compile to SIMD instructions and get something
like this:
l oop :

movupd (%edx) ,%xmm0
movupd (%ecx) ,%xmm1
addpd %xmm1,%xmm0
movpd %xmm0,(% edx)
add l 16,% edx
add l 16,% ecx
add l 2,% e s i
cmp %eax ,% e s i
j l e l oop

• We’re doing two elements at a time now, on the same core

Lecture 07 - Speculation and Parallelization Patterns University of Waterloo

Speculation SIMD Parallelization Patterns

SIMD Overview

• Operations are packed and operate on multiple data elements
at the same time

• For modern 64 bit CPUs, SSE has 16 128 bit registers

• Very good if your data can be vectorized and performs math

• Usual application: image/video processing

• We’ll see more about SIMD as we get into GPU programming
(they’re very good at these types of applications)

Lecture 07 - Speculation and Parallelization Patterns University of Waterloo

Speculation SIMD Parallelization Patterns

Overview

• In the following examples we’ll be looking at thread or
process-based parallelization

• Again, we should be familiar with differences between a thread
and process

Lecture 07 - Speculation and Parallelization Patterns University of Waterloo

Speculation SIMD Parallelization Patterns

Multiple Independent Tasks

• Only useful to maximize system utilization

• Running multiple tasks on the same system (database and
web server)

• If one is memory-bound and the other is I/O-bound, for
example, you’ll get maximum utilization out of your resources

• Example: cloud computing, each task is independent and can
spread itself over different nodes

• Performance should increase linearly with the number of
threads

Lecture 07 - Speculation and Parallelization Patterns University of Waterloo

Speculation SIMD Parallelization Patterns

Multiple Loosely-Coupled Tasks

• Tasks aren’t quite independent, so there needs to be some
inter-task communication (but not much)

• Communication might be from the tasks to a controller or
status monitor

• Refactoring an application can help with latency, e.g. splitting
off the CPU-intensive computations into a thread, then your
application may respond more quickly

• Example: A program receives/forward packets and logs them.
You can split these two tasks into two threads, so you can still
recieve/foward while waiting for disk. This will increase the
throughput of the system

Lecture 07 - Speculation and Parallelization Patterns University of Waterloo

Speculation SIMD Parallelization Patterns

Multiple Copies of the Same Task

• Variant of multiple independent tasks

• Run multiple copies of the same task (probably on different
data)

• In this case, there would be no communcation between
different copies

• Again, performance should increase linearly with number of
tasks

• Example: in a rendering application each thread can be
responsible for a frame (gain throughput, same latency)

Lecture 07 - Speculation and Parallelization Patterns University of Waterloo

Speculation SIMD Parallelization Patterns

Single Task, Multiple Threads

• Classic vision of “parallelization”

• Example: Distributing array processing over multiple threads
(each thread computes results for a subset of the array)

• Can decrease latency (also increases throughput) as we saw
with Amdahl’s Law

• Communication can be a problem, if the data is not nicely
separated

• Most common implementation is just creating threads and
joining them, combining all the results at the join

Lecture 07 - Speculation and Parallelization Patterns University of Waterloo

Speculation SIMD Parallelization Patterns

Pipeline of Tasks

• Seen this briefly in computer architecture

• Have multiple stages, with each thread doing a stage

• Example: a program that handles network packets, it:
accepts packets, processes them and re-transmits them. Could
set up the threads where a packet goes through the threads.

• Improve throughput, may increase latency since there’s
communication between threads

• In the best case, you’ll have a linear speedup

• Rare since the runtime of the stages will not be even, and the
slow one will be the bottleneck (although you could have 2
instances of the slow stage)

Lecture 07 - Speculation and Parallelization Patterns University of Waterloo

Speculation SIMD Parallelization Patterns

Client-Server

• To execute a large computation the server supplies work to
many clients (as many as request it)

• Client computes the results and returns the result to the server

• Examples: botnets, SETI@Home, GUI application (backend
acts as the server)

• Server can arbitrate access to shared resources (such as
network access) by storing the requests and sending them out

• Parallelism is somewhere between single task, multiple threads
and multiple loosely-coupled tasks

Lecture 07 - Speculation and Parallelization Patterns University of Waterloo

Speculation SIMD Parallelization Patterns

Producer-Consumer

• Variant on the pipeline and client-server models

• Producer generates work, and the consumer performs work

• Example: a producer which generates rendered frames, and a
consumer which orders these frames and writes them to disk

• Any number of producers and consumers

• This approach can improve throughput and also reduces
design complexity

Lecture 07 - Speculation and Parallelization Patterns University of Waterloo

Speculation SIMD Parallelization Patterns

Combining Strategies

• Most problems don’t fit into one category, it’s often best to
combine strategies

• For instance, you might often start with a pipeline, and then
use multiple threads in a particular pipeline stage to handle
one piece of data

• Always estimate to see what divisions of strategies would work
best (might have to do more iterations of Amdahl’s law
depending on the amount of strategies you can use)

Lecture 07 - Speculation and Parallelization Patterns University of Waterloo

Speculation SIMD Parallelization Patterns

Thread Pools

• Instead of creating threads, destroying them and recreating
them, you can use a thread pool

• Creates a n threads and you just push work onto them

Task Queue
...

Thread
Pool

Completed Tasks
...

• Only question is, how many threads should you create? (you
should have a pretty good feel after Assignment 1)

• Common implementation: GThreadPool

Lecture 07 - Speculation and Parallelization Patterns University of Waterloo

Speculation SIMD Parallelization Patterns

Midterm Questions from Last Year (1)

For each of the following situations, name an appropriate
parallelization pattern and the granularity at which you
would apply it, explain the necessary communication, and
explain why your pattern is appropriate.

• build system, e.g. parallel make

• Multiple independent tasks, at a per-file granularity

• optical character recognition system

• Pipeline of tasks
• 2 tasks - finding characters and analyzing them

Lecture 07 - Speculation and Parallelization Patterns University of Waterloo

Speculation SIMD Parallelization Patterns

Midterm Questions from Last Year (1)

For each of the following situations, name an appropriate
parallelization pattern and the granularity at which you
would apply it, explain the necessary communication, and
explain why your pattern is appropriate.

• build system, e.g. parallel make
• Multiple independent tasks, at a per-file granularity

• optical character recognition system
• Pipeline of tasks
• 2 tasks - finding characters and analyzing them

Lecture 07 - Speculation and Parallelization Patterns University of Waterloo

Speculation SIMD Parallelization Patterns

Midterm Questions from Last Year (2)

Give a concrete example where you would use the following
parallelization patterns. Explain the granularity at which you’d
apply the pattern.

• single task, multiple threads

• Computation of a mathematical function with independent
sub-formulas

• producer-consumer (no rendering frames, please)

• Processing of stock-market data
• A server might generate raw financial data (quotes) for a

particular security. The server would be the producer. Several
clients (or consumers) may take the raw data and use them in
different ways. For instance by generating averages, means,
charts, etc.

Lecture 07 - Speculation and Parallelization Patterns University of Waterloo

Speculation SIMD Parallelization Patterns

Midterm Questions from Last Year (2)

Give a concrete example where you would use the following
parallelization patterns. Explain the granularity at which you’d
apply the pattern.

• single task, multiple threads
• Computation of a mathematical function with independent

sub-formulas
• producer-consumer (no rendering frames, please)

• Processing of stock-market data
• A server might generate raw financial data (quotes) for a

particular security. The server would be the producer. Several
clients (or consumers) may take the raw data and use them in
different ways. For instance by generating averages, means,
charts, etc.

Lecture 07 - Speculation and Parallelization Patterns University of Waterloo

	Speculation
	SIMD
	Parallelization Patterns

