
Lecture 08 - Automatic Parallelization
ECE 459: Programming for Performance

Jon Eyolfson

University of Waterloo

January 20, 2012

Introduction

• Today’s topic is automatic parallelization

• Vision: take a sequential C program and convert it into a
parallel version

• Lots of research in the early 1990s, then tapered off

• Renewed interest now since multicores are so common

Lecture 08 - Automatic Parallelization University of Waterloo

Arrays vs Dynamically-allocated Data Structures

• Easiest to parallelize programs which performs a computation
over a huge array

• Some languages are easier than others to reason about (and
therefore automatically parallelize)

• C can be easy to parallelize, given the right code and compiler
hints

• For this course, we’ll just worry about automatic
parallelization on arrays (as was the case last year)

• Some production compilers support parallelization: icc
(Intel’s non-free compiler), solarisstudio (Oracle’s
free-as-in-beer compiler 1) and gcc (GNU’s free-as-in-speech
compiler)

1http://www.oracle.com/technetwork/documentation/
solaris-studio-12-192994.html

Lecture 08 - Automatic Parallelization University of Waterloo

http://www.oracle.com/technetwork/documentation/solaris-studio-12-192994.html
http://www.oracle.com/technetwork/documentation/solaris-studio-12-192994.html

Example Code from the Textbook

Following Gove, we’ll parallelize the following code:
1 #i n c l u d e < s t d l i b . h>
2
3 v o i d s e tup (doub l e ∗ vec to r , i n t l e n g t h) {
4 i n t i ;
5 f o r (i = 0 ; i < l e n g t h ; i ++)
6 {
7 v e c t o r [i] += 1 . 0 ;
8 }
9 }

10
11 i n t main ()
12 {
13 doub l e ∗ v e c t o r ;
14 v e c t o r = (doub l e ∗) ma l l o c (s i z e o f (doub l e)∗1024∗1024) ;
15 f o r (i n t i = 0 ; i < 1000 ; i ++)
16 {
17 se tup (vec to r , 1024∗1024) ;
18 }
19 }

Lecture 08 - Automatic Parallelization University of Waterloo

Example Code Parallelization

What can we do to parallelize this code?

Option 1:

• Divide up the array on line 5 so each thread operates on a
sub-array

Option 2:

• Divide up the number of iterations on line 15 so each thread
has an even amount of calls to setup

(unsafe)

Option 3:

• Divide up the array before the loop on line 15 and each
thread does it’s iterations on a sub-array

Lecture 08 - Automatic Parallelization University of Waterloo

Example Code Parallelization

What can we do to parallelize this code?

Option 1:

• Divide up the array on line 5 so each thread operates on a
sub-array

Option 2:

• Divide up the number of iterations on line 15 so each thread
has an even amount of calls to setup

(unsafe)

Option 3:

• Divide up the array before the loop on line 15 and each
thread does it’s iterations on a sub-array

Lecture 08 - Automatic Parallelization University of Waterloo

Example Code Parallelization

What can we do to parallelize this code?

Option 1:

• Divide up the array on line 5 so each thread operates on a
sub-array

Option 2:

• Divide up the number of iterations on line 15 so each thread
has an even amount of calls to setup

(unsafe)

Option 3:

• Divide up the array before the loop on line 15 and each
thread does it’s iterations on a sub-array

Lecture 08 - Automatic Parallelization University of Waterloo

Example Code Parallelization

What can we do to parallelize this code?

Option 1:

• Divide up the array on line 5 so each thread operates on a
sub-array

Option 2:

• Divide up the number of iterations on line 15 so each thread
has an even amount of calls to setup (unsafe)

Option 3:
• Divide up the array before the loop on line 15 and each

thread does it’s iterations on a sub-array

Lecture 08 - Automatic Parallelization University of Waterloo

Example Code with Manual Parallelization

I’ll show a demo of two example parallelizations

Compiling with solarisstudio, flags -O3 -lpthread

Which manual option indeed performs better?

Lecture 08 - Automatic Parallelization University of Waterloo

Example Code with Automatic Parallelization

Let’s try with automatic parallelization

Compiling with solarisstudio and automatic parallelization flags
yields the following:
% s o l a r i s s t u d i o −cc −O3 −xautopa r −x l o o p i n f o omp vector . c

−o omp vec to r au to
” omp vector . c ” , l i n e 5 : PARALLELIZED , and s e r i a l v e r s i o n

g e n e r a t e d
” omp vector . c ” , l i n e 15 : not p a r a l l e l i z e d , c a l l may be

u n s a f e

How will this code compare to our manual efforts?

Note: solarisstudio generates two versions of the code, and
and decides, at runtime, if the parallel code would be faster

Lecture 08 - Automatic Parallelization University of Waterloo

Example Code Comparison Between Methods

• Under the hood, most parallelization frameworks utilize
OpenMP, which we’ll see next lecture

• For now, just know you can control the number of threads
with the OMP NUM THREADS environment variable

How does it compare?

• Relative ordering: Option 3 > Automatic > Option 1
• Its automatic parallelization of Option 1 was better than

ours, why?
• Our Option 3 performed better, even though both used the

same number of threads, why?

Lecture 08 - Automatic Parallelization University of Waterloo

Example Code Comparison Between Methods

• Under the hood, most parallelization frameworks utilize
OpenMP, which we’ll see next lecture

• For now, just know you can control the number of threads
with the OMP NUM THREADS environment variable

How does it compare?
• Relative ordering: Option 3 > Automatic > Option 1
• Its automatic parallelization of Option 1 was better than

ours, why?

• Our Option 3 performed better, even though both used the
same number of threads, why?

Lecture 08 - Automatic Parallelization University of Waterloo

Example Code Comparison Between Methods

• Under the hood, most parallelization frameworks utilize
OpenMP, which we’ll see next lecture

• For now, just know you can control the number of threads
with the OMP NUM THREADS environment variable

How does it compare?
• Relative ordering: Option 3 > Automatic > Option 1
• Its automatic parallelization of Option 1 was better than

ours, why?
• Our Option 3 performed better, even though both used the

same number of threads, why?

Lecture 08 - Automatic Parallelization University of Waterloo

Example Code with Automatic Parallelization in gcc

• gcc (since 4.3) can also parallelize loops, however, there are a
few problems:

1 It will not tell you which loops it parallelizes (nicely)
2 It only operates with a fixed number of threads
3 The profitability metrics are quite simple
4 Only operates in simple cases

Use the flag, -ftree-parallelize-loops=N where N is the
number of threads

Note: gcc also uses OpenMP but just ignores the
OMP NUM THREADS environment variable

Lecture 08 - Automatic Parallelization University of Waterloo

Example Code Automatic Parallelization Inspection in gcc

There’s a flag -fdump-tree-parloops-details to see what the
automatic parallelizations were, but it’s quite unreadable
Instead, you can look at the assembly code to see the
parallelizations (obviously, impractical for a large project)
% gcc −s t d=c99 −O3 − f t r e e −p a r a l l e l i z e −l o o p s=4

omp vec to r gcc . c −S −o o m p v e c t o r g c c a u t o . s

The resulting .s file contains the following code:
c a l l G O M P p a r a l l e l s t a r t
l e a q 80(% r s p) , %r d i
c a l l s e tup . l o o p f n . 0
c a l l GOMP para l l e l end

Note: gcc also parallelizes main. loopfn.2 and
main. loopfn.3, although it looks like it serves little purpose

Lecture 08 - Automatic Parallelization University of Waterloo

Case Study: Multiplying a Matrix by a Vector
Let’s see how automatic parallelization does on a more
complicated program (could we parallelize this?):

1 v o i d matVec (doub l e ∗∗mat , doub l e ∗ vec , doub l e ∗ out ,
2 i n t ∗row , i n t ∗ c o l)
3 {
4 i n t i , j ;
5 f o r (i = 0 ; i < ∗row ; i ++)
6 {
7 out [i] = 0 ;
8 f o r (j = 0 ; j < ∗ c o l ; j++)
9 {

10 out [i] += mat [i] [j] ∗ vec [j] ;
11 }
12 }
13 }

Reminder:
[

1 2 3
4 5 6

] 1
2
3

 =

[
14
32

]

Lecture 08 - Automatic Parallelization University of Waterloo

Case Study Automatic Parallelization Attempt 1

Well, based on our knowledge, we could parallelize the outer loop

Let’s see what solarisstudio will do for us...
% s o l a r i s s t u d i o −cc −xautopa r −x l o o p i n f o −O3 −c f p l o o p . c
” f p l o o p . c ” , l i n e 5 : not p a r a l l e l i z e d , not a r e c o g n i z e d f o r

l oop
” f p l o o p . c ” , l i n e 8 : not p a r a l l e l i z e d , not a r e c o g n i z e d f o r

l oop

... it refuses to do anything, guesses?

Lecture 08 - Automatic Parallelization University of Waterloo

Case Study Automatic Parallelization Attempt 2

• The loop bounds are not constant, since one of the variables
may alias to row or col, despite being different types

So, let’s add restrict to row and col and see what happens...
% s o l a r i s s t u d i o −cc −O3 −xautopa r −x l o o p i n f o −c f p l o o p . c
” f p l o o p . c ” , l i n e 5 : not p a r a l l e l i z e d , u n s a f e dependence
” f p l o o p . c ” , l i n e 8 : not p a r a l l e l i z e d , u n s a f e dependence

Now it recognizes the loop, but still won’t parallelize it, why?

Lecture 08 - Automatic Parallelization University of Waterloo

Case Study Automatic Parallelization Attempt 3

• out might alias mat or vec, which would make this unsafe
Let’s add another restrict to out

% s o l a r i s s t u d i o −cc −O3 −xautopa r −x l o o p i n f o −c f p l o o p . c
” f p l o o p . c ” , l i n e 5 : PARALLELIZED , and s e r i a l v e r s i o n

g e n e r a t e d
” f p l o o p . c ” , l i n e 8 : not p a r a l l e l i z e d , u n s a f e dependence

Now, we can get the outer loop to parallelize
• Parallelizing the outer loop is almost always better than inner

loops, and usually its a waste to do both, so we’re done
Note: We can parallelize the inner loop as well (it’s similar to
Assignment 1) and we’ll see that solarisstudio can do it
automatically

Lecture 08 - Automatic Parallelization University of Waterloo

Examples of Loops Automatic Parallelization Can Handle

One nested and simple loop
f o r (i = 0 ; i < 1000 ; i ++){

x [i] = i + 3 ;

Nested loops with simple dependency
f o r (i = 0 ; i < 100 ; i ++)

f o r (j = 0 ; j < 100 ; j++)
X[i] [j] = X[i] [j] + Y[i −1] [j] ;

One nested loop with Not-very-simple dependency
f o r (i = 0 ; i < 10 ; i ++)

X[2∗ i +1] = X[2∗ i] ;

Lecture 08 - Automatic Parallelization University of Waterloo

Examples of Loops Automatic Parallelization Can’t Handle

Simple loop with if statement
f o r (j = 0 ; j <=10; j++)

i f (j > 5) X[i] = i + 3 ;

Triangle loop
f o r (i = 0 ; i < 100 ; i ++)

f o r (j = i ; j < 100 ; j++)
X[i] [j] = 5 ;

Examples from: http://gcc.gnu.org/wiki/AutoparRelated

Lecture 08 - Automatic Parallelization University of Waterloo

http://gcc.gnu.org/wiki/AutoparRelated

Summary of Conditions for Automatic Parallelization

Here’s some conditions for automatic parallelization from Chapter
10 of Oracle’s Fortran Programming Guide 2 with analogies to C, a
loop must:

• have a recognized loop style, e.g. for loops with bounds that
don’t vary per iteration

• have no dependencies between data accessed in loop bodies
for each iteration

• not conditionally change scalar variables read after the loop
terminates, or change any scalar variable across iterations

• have enough work in the loop body to make parallelization
profitable

2http:
//download.oracle.com/docs/cd/E19205-01/819-5262/index.html

Lecture 08 - Automatic Parallelization University of Waterloo

http://download.oracle.com/docs/cd/E19205-01/819-5262/index.html
http://download.oracle.com/docs/cd/E19205-01/819-5262/index.html

Reductions

• Reductions combine the data to a smaller set
• We’ll see a more complete definition when we touch on

functional programming
• Simplest instance is computing the sum of an array

Consider the following code:
doub l e sum (doub l e ∗ a r ray , i n t l e n g t h)
{

doub l e t o t a l = 0 ;

f o r (i n t i = 0 ; i < l e n g t h ; i ++)
t o t a l += a r r a y [i] ;

r e t u r n t o t a l ;
}

Can we parallelize this? (it should look somewhat similar)

Lecture 08 - Automatic Parallelization University of Waterloo

Reduction Problems

The problems:
1 value of total depends on what gets computed in previous

iterations
2 addition is actually non-associative for floating-point values

(is this a problem?)

Recall associate means: a + (b + c) = (a + b) + c

• In this case, the program probably isn’t sensitive to rounding,
but you should always consider if an operation is associative

Lecture 08 - Automatic Parallelization University of Waterloo

Reduction Problems

The problems:
1 value of total depends on what gets computed in previous

iterations
2 addition is actually non-associative for floating-point values

(is this a problem?)

Recall associate means: a + (b + c) = (a + b) + c

• In this case, the program probably isn’t sensitive to rounding,
but you should always consider if an operation is associative

Lecture 08 - Automatic Parallelization University of Waterloo

Reduction Automatic Parallelization

If we compile the program with solarisstudio and add the flag
-xreduction, it will parallelize the code
% s o l a r i s s t u d i o −cc −xautopa r −x l o o p i n f o −x r e d u c t i o n −O3

−c sum . c
”sum . c ” , l i n e 5 : PARALLELIZED , r e d u c t i o n , and s e r i a l v e r s i o n

g e n e r a t e d

Note: If we try to do the reduction on the restricted version of
the case study, we’ll get the following:
% s o l a r i s s t u d i o −cc −O3 −xautopa r −x l o o p i n f o −x r e d u c t i o n

−c f p l o o p . c
” f p l o o p . c ” , l i n e 5 : PARALLELIZED , and s e r i a l v e r s i o n

g e n e r a t e d
” f p l o o p . c ” , l i n e 8 : not p a r a l l e l i z e d , not p r o f i t a b l e

Lecture 08 - Automatic Parallelization University of Waterloo

Dealing with Function Calls

• A general function could have arbitary side effects
• Production compilers tend to avoid parallelizing any loops

with function calls

Some built-in functions, like sin() are “pure”, and have no side
effects and are safe to parallelize

Note: this is why functional languages are nice for parallel
programming, since you explicitly state pure and impure functions

Lecture 08 - Automatic Parallelization University of Waterloo

Dealing with Function Calls in solarisstudio

• For solarisstudio you can use the -xbuiltin flag to make
the compiler use its whitelist of “pure” functions

• This means the compiler can parallelize a loop which uses
sin() (you shouldn’t replace built-in functions with your own
if you use this option)

Other options which may work:
1 Crank up the optimization level (-xO4)
2 Explicitly tell the compiler to inline certain functions

(-xinline= or use the inline keyword)

Lecture 08 - Automatic Parallelization University of Waterloo

